Skip to main content

Optical Antennas and Enhanced Nonlinear Effects

  • Chapter
  • First Online:
Rectenna Solar Cells

Abstract

Optical nanoantennas are important devices for efficiently converting propagating and radiated waves into confined and dramatically enhanced fields at the nanoscale. Recent advances in the realization and modeling of subwavelength optical antennas have led to their use in energy harvesting, biological and chemical sensing, optical imaging, nonlinear wave mixing, harmonic generation, and various other near-infrared and optical applications. Typically, nonlinear optical activity is very weak in nanoscale volumes filled by nonlinear media. However, the resonant interaction of light in subwavelength nanoantennas offers an efficient way to explore nonlinear processes at the nanoscale, based on the strong field enhancement in their proximity, and to design, analyze, and predict optical phenomena that were previously not accessible. In this chapter, we review recent findings on nanodipole antennas loaded with nanoparticles for third-order nonlinear operation. We extend the concept of optical impedance of nanoantennas when nonlinear effects are present, and we apply it to model strong optical bistable effects and all-optical nanodevice designs, including nanomemories, nanoswitches, and nano-rectennas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alù A, Engheta N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photon. 2008;2:307.

    Article  Google Scholar 

  2. Alù A, Engheta N. Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys Rev. 2008;B78:195111.

    Article  Google Scholar 

  3. Alù A, Engheta N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett. 2008;101:043901.

    Article  Google Scholar 

  4. Alù A, Engheta N. Cloaking a sensor. Phys Rev Lett. 2009;102:233901.

    Article  Google Scholar 

  5. Alù A, Engheta N. Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett. 2010;104:213902.

    Article  Google Scholar 

  6. Alù A, Engheta N. Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles. In: Maradudin AA, editor. Structured surfaces as optical metamaterials. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  7. Argyropoulos C, Chen PY, D’Aguanno G, Engheta N, Alù A. Boosting optical nonlinearities in epsilon-near-zero plasmonic channels. Phys Rev. 2012;B85:045129.

    Article  Google Scholar 

  8. Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alù A. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett. 2012;108:263905.

    Article  Google Scholar 

  9. Aizpurua J, Bryant GW, Richter LJ, García de Abajo FJ, Kelley BK, Mallouk T. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev. 2005;B71:235420.

    Article  Google Scholar 

  10. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci. 2009;106:19227.

    Article  Google Scholar 

  11. Balanis CA. Antenna theory: analysis and design. 3rd ed. New York: Wiley; 2005.

    Google Scholar 

  12. Ballesteros JM, Serna R, Solis J, Afonso CN, Petford-Long AK, Osborne DH, Haglund RF. Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility. Appl Phys Lett. 1997;71:2445.

    Article  Google Scholar 

  13. Belov P, Simovski C. Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers. Phys Rev. 2005;E72:026615.

    Google Scholar 

  14. Biagioni P, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys. 2012;75:024402.

    Article  Google Scholar 

  15. Boyd RW. Nonlinear optics. London: Academic; 1992.

    Google Scholar 

  16. Bryant GW, Garcia de Abajo FJ, Aizpurua J. Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 2008;8:631.

    Article  Google Scholar 

  17. CST Studio Suite; 2009. http://www.cst.com

  18. Cao L, Fan P, Vasudev AP, White JS, Yu Z, Cai W, Schuller JA, Fan S, Brongersma ML. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 2010;10:439.

    Article  Google Scholar 

  19. Chen PY, Alù A. Optical nanoantenna arrays loaded with nonlinearity. Phys Rev. 2010;B82:235405.

    Article  Google Scholar 

  20. Chen PY, Farhat M, Alù A. Bistable and self-tunable negative-index metamaterial at optical frequencies. Phys Rev Lett. 2011;106:105503.

    Article  Google Scholar 

  21. Chen PY, Alù A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 2011;11:5514.

    Article  Google Scholar 

  22. Chettiar UK, Engheta N. Optical frequency mixing through nanoantenna enhanced difference frequency generation: Metatronic mixer. Phys Rev. 2012;B86:075405.

    Article  Google Scholar 

  23. Corkish R, Green MA, Puzzer T. Solar energy collection by antennas. Solar Energy. 2002;73:395.

    Article  Google Scholar 

  24. Crozier KB, Sundaramurthy A, Kino GS, Quate CF. Optical antennas: resonators for local field enhancement. J Appl Phys. 2003;94:4632.

    Article  Google Scholar 

  25. Cubukcu E, Kort EA, Crozier KB, Capasso F. Plasmonic laser antenna. Appl Phys Lett. 2006;89:093120.

    Article  Google Scholar 

  26. Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett. 2007;98:026104.

    Article  Google Scholar 

  27. Engheta N, Salandrino A, Alù A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett. 2005;95:095504.

    Article  Google Scholar 

  28. Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science. 2007;317:1698.

    Article  Google Scholar 

  29. Fusco VF, Buchanan NB, Malyuskin O. Active phase conjugating lens with sub-wavelength resolution capability. IEEE Trans Antenna Propagat. 2010;58:798.

    Article  Google Scholar 

  30. Greffet J-J, Laroche M, Marquier F. Impedance of a nanoantenna and a single quantum emitter. Phys Rev Lett. 2010;105:117701.

    Article  Google Scholar 

  31. Harutyunyan H, Volpe G, Quidant R, Novotny L. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys Rev Lett. 2012;108:217403.

    Article  Google Scholar 

  32. Johnson PB, Christy RW. Optical-constants of noble-metals. Phys Rev. 1972;B6:4307.

    Google Scholar 

  33. Liu Z, Boltasseva A, Pedersen RH, Bakker R, Kildishev AV, Drachev VP, Shalaev VM. Plasmonic nanoantenna arrays for the visible. Metamaterials. 2008;2:45.

    Article  Google Scholar 

  34. Mandel P, Smith SD, Wherrett BS. Chapter 4.3, From optical bistability towards optical computer. North Holland, Netherlands; 1987.

    Google Scholar 

  35. McAulay AD. Optical computer architectures. New York: Wiley; 1991.

    Google Scholar 

  36. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW. Resonant optical antennas. Science. 2005;308:1607.

    Article  Google Scholar 

  37. Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett. 2007;98:266802.

    Article  Google Scholar 

  38. Novotny L, van Hulst N. Antennas for light. Nat Photon. 2011;5:83.

    Article  Google Scholar 

  39. Palomba S, Danckwerts M, Novotny L. Nonlinear plasmonics with gold nanoparticle antennas. J Opt A Pure Appl Opt. 2009;11:114030.

    Article  Google Scholar 

  40. Palomba S, Novotny L. Near-field imaging with a localized nonlinear light source. Nano Lett. 2009;11:3801.

    Article  Google Scholar 

  41. Porto JA, Martin-Moreno L, Garcia-Vidal FJ. Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev. 2004;B70:081402(R).

    Google Scholar 

  42. Pozar DM. Microwave engineering. 4th ed. New York: Wiley; 2012.

    Google Scholar 

  43. Rajagopalan H, Vippa P, Thakur M. Quadratic electro-optic effect in a nano-optical material based on the nonconjugated conductive polymer, poly(β-pinene). Appl Phys Lett. 2006;88:033109.

    Article  Google Scholar 

  44. Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photon. 2009;3:287.

    Article  Google Scholar 

  45. Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WW. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett. 2005;94:017402.

    Article  Google Scholar 

  46. Smith SD. Lasers, nonlinear optics and optical computers. Nature. 1985;316:319.

    Article  Google Scholar 

  47. Stockman M, Kling M, Kleinberg U, Krausz F. Attosecond nanoplasmonic-field microscope. Nat Photon. 2007;1:539.

    Article  Google Scholar 

  48. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005;5:1569.

    Article  Google Scholar 

  49. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A. Active and tunable metamaterials. Laser Photonics Rev. 2010;4:795.

    Article  Google Scholar 

  50. Yin Y, Lu Y, Gates B, Xia Y. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc. 2001;123:8718.

    Article  Google Scholar 

  51. Zhao Y, Engheta N, Alù A. Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. J Opt Soc Am B. 2011;28:1266.

    Article  Google Scholar 

  52. Zhou F, Liu Y, Li Z, Xia Y. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt Express. 2010;18:13337.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the U. S. Army Research Office W911NF-11-1-0447, AFOSR with YIP award No. FA9550-11-1-0009 and the ONR MURI grant No. N00014-10-1-0942.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, P.Y., Argyropoulos, C., Alù, A. (2013). Optical Antennas and Enhanced Nonlinear Effects. In: Moddel, G., Grover, S. (eds) Rectenna Solar Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3716-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3716-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3715-4

  • Online ISBN: 978-1-4614-3716-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics