Skip to main content

Biogenesis of Mitochondrial Proteins

  • Chapter
  • First Online:
Mitochondrial Oxidative Phosphorylation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

Depending on the organism, mitochondria consist approximately of 500–1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which—together with many nuclear-encoded proteins—form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IMS:

Intermembrane space

TIM:

Translocase of the inner membrane

TOM:

Translocase of the outer membrane

References

  • Abe Y, Shodai T, Muto T, Mihara K, Torii H, Mishikawa S, Endo T, Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–560

    PubMed  CAS  Google Scholar 

  • Ahting U, Thieffry M, Engelhardt H, Hegerl R, Neupert W, Nussberger S (2001) Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J Cell Biol 153:1151–1160

    PubMed  CAS  Google Scholar 

  • Alder NN, Jensen RE, Johnson AE (2008) Fluorescence mapping of mitochondrial TIM23 complex reveals a water-facing, substrate-interacting helix surface. Cell 134:439–450

    PubMed  CAS  Google Scholar 

  • Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S et al (2012) MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 23(2):247–257

    PubMed  CAS  Google Scholar 

  • Allen S, Lu H, Thornton D, Tokatlidis K (2003) Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10. J Biol Chem 278:38505–38513

    PubMed  CAS  Google Scholar 

  • Allen S, Balabanidou V, Sideris DP, Lisowsky T, Tokatlidis K (2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J Mol Biol 353:937–944

    PubMed  CAS  Google Scholar 

  • Altamura N, Capitanio N, Bonnefoy N, Papa S, Dujardin G (1996) The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett 382:111–115

    PubMed  CAS  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    PubMed  CAS  Google Scholar 

  • Ang SK, Lu H (2009) Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. J Biol Chem 284:28754–28761

    PubMed  CAS  Google Scholar 

  • Attardi G (1981) Organisation and expression of the mammalian mitochondrial genome: a lesson in economy. Trends Biochem Sci 6(86–89):100–103

    CAS  Google Scholar 

  • Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A, Martinelli M, Sideris DP, Katrakili N, Tokatlidis K (2009) Mia40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol 16:198–206

    PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A, Gonnelli L, Luchinat E, Sideris D et al (2010) Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Proc Natl Acad Sci USA 107:20190–20195

    PubMed  CAS  Google Scholar 

  • Barrientos A, Zambrano A, Tzagoloff A (2004) Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J 23:3472–3482

    PubMed  CAS  Google Scholar 

  • Bauer M, Behrens M, Esser K, Michaelis G, Pratje E (1994) PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast. Mol Gen Genet 245:272–278

    PubMed  CAS  Google Scholar 

  • Bauerschmitt H, Mick DU, Deckers M, Vollmer C, Funes S, Kehrein K, Ott M, Rehling P, Herrmann JM (2010) Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation. Mol Biol Cell 21:1937–1944

    PubMed  CAS  Google Scholar 

  • Beasley EM, Muller S, Schatz G (1993) The signal that sorts yeast cytochrome b2 to the mitochondrial intermembrane space contains three distinct functional regions. EMBO J 12:2303–2311

    PubMed  CAS  Google Scholar 

  • Becker T, Wenz LS, Thornton N, Stroud D, Meisinger C, Wiedemann N, Pfanner N (2011) Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J Mol Biol 405:113–124

    PubMed  CAS  Google Scholar 

  • Bergemann AD, Cole F, Hirschhorn K (2005) The etiology of Wolf-Hirschhorn syndrome. Trends Genet 21:188–195

    PubMed  CAS  Google Scholar 

  • Bhangoo MK, Tzankov S, Fan AC, Dejgaard K, Thomas DY, Young JC (2007) Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. Mol Biol Cell 18:3414–3428

    PubMed  CAS  Google Scholar 

  • Bien M, Longen S, Wagener N, Chwalla I, Herrmann JM, Riemer J (2010) Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proof read by glutathione. Mol Cell 37:516–528

    PubMed  CAS  Google Scholar 

  • Bihlmaier K, Mesecke N, Terzyiska N, Bien M, Hell K, Herrmann JM (2007) The disulfide relay system of mitochondria is connected to the respiratory chain. J Cell Biol 179:389–395

    PubMed  CAS  Google Scholar 

  • Blom J, Kübrich M, Rassow J, Voos W, Dekker PJ, Maarse AC, Meijer M, Pfanner N (1993) The essential yeast protein MIM44 (encoded by MPI1) is involved in an early step of preprotein translocation across the mitochondrial inner membrane. Mol Cell Biol 13:7364–7371

    PubMed  CAS  Google Scholar 

  • Bohnert M, Rehling P, Guiard B, Herrmann JM, Pfanner N, van der Laan M (2010) Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Curr Biol 20:1227–1232

    PubMed  CAS  Google Scholar 

  • Bonnefoy N, Chalvet F, Hamel P, Slominski PP, Dujardin G (1994) OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol 239:201–212

    PubMed  CAS  Google Scholar 

  • Borst P, Grivell LA (1978) The mitochondrial genome of yeast. Cell 15:705–723

    PubMed  CAS  Google Scholar 

  • Botelho SC, Osterberg M, Reichert AS, Yamano K, Bjorkholm P, Endo T, von Heijne G, Kim H (2011) TIM23-mediated insertion of transmembrane alpha-helices into the mitochondrial inner membrane. EMBO J 30:1003–1011

    PubMed  CAS  Google Scholar 

  • Brix J, Rudiger S, Bukau B, Schneider-Mergener J, Pfanner N (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem 274:16522–16530

    PubMed  CAS  Google Scholar 

  • Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N (2000) The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J Mol Biol 303:479–488

    PubMed  CAS  Google Scholar 

  • Burri L, Strahm Y, Hawkins CJ, Gentle IE, Puryer MA, Verhagen A, Callus B, Vaux D, Lithgow T (2005) Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Mol Biol Cell 16:2926–2933

    PubMed  CAS  Google Scholar 

  • Carrie C, Murcha MW, Whelan J (2010) An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biol 10:249

    PubMed  Google Scholar 

  • Cavallaro G (2010) Genome-wide analysis of eukaryotic twin CX9C proteins. Mol Biosyst 6:2459–2470

    PubMed  CAS  Google Scholar 

  • Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:15803–15808

    PubMed  CAS  Google Scholar 

  • Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuan Szklarz LK, Schulze-Specking A, Truscott KN, Guiard B, Meisinger C, Pfanner N (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23:3735–3746

    PubMed  CAS  Google Scholar 

  • Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, Sickmann A, Meyer HE, Truscott KN, Guiard B et al (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829

    PubMed  CAS  Google Scholar 

  • Chacinska A, van der Laan M, Mehnert CS, Guiard B, Mick DU, Hutu DP, Truscott KN, Wiedemann N, Meisinger C, Pfanner N et al (2010) Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol Cell Biol 30:307–318

    PubMed  CAS  Google Scholar 

  • Claros MG, Perea J, Shu YM, Samatey FA, Popot JL, Jacq C (1995) Limitations to in vivo import of hydrophobic proteins into yeast mitochondria – the case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228:762–771

    PubMed  CAS  Google Scholar 

  • Curran SP, Leuenberger D, Leverich EP, Hwang DK, Beverly KN, Koehler CM (2004) The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J Biol Chem 279:43744–43751

    PubMed  CAS  Google Scholar 

  • D’Silva P, Liu Q, Walter W, Craig EA (2004) Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane. Nat Struct Mol Biol 11:1084–1091

    PubMed  Google Scholar 

  • D’Silva PR, Schilke B, Walter W, Craig EA (2005) Role of Pam16′s degenerate J domain in protein import across the mitochondrial inner membrane. Proc Natl Acad Sci USA 102: 12419–12424

    PubMed  Google Scholar 

  • Dabir DV, Leverich EP, Kim SK, Tsai FD, Hirasawa M, Knaff DB, Koehler CM (2007) A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J 26:4801–4811

    PubMed  CAS  Google Scholar 

  • Dembowski M, Kunkele KP, Nargang FE, Neupert W, Rapaport D (2001) Assembly of Tom6 and Tom7 into the TOM core complex of Neurospora crassa. J Biol Chem 276:17679–17685

    PubMed  CAS  Google Scholar 

  • Donzeau M, Kaldi K, Adam A, Paschen S, Wanner G, Guiard B, Bauer MF, Neupert W, Brunner M (2000) Tim23 links the inner and the outer mitochondrial membranes. Cell 101:401–412

    PubMed  CAS  Google Scholar 

  • du Plessis DJ, Nouwen N, Driessen AJ (2006) Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J Biol Chem 281:12248–12252

    PubMed  Google Scholar 

  • Elstner M, Andreoli C, Klopstock T, Meitinger T, Prokisch H (2009) The mitochondrial proteome database: MitoP2. Methods Enzymol 457:3–20

    PubMed  CAS  Google Scholar 

  • Fan AC, Kozlov G, Hoegl A, Marcellus RC, Wong MJ, Gehring K, Young JC (2011) Interaction between the human mitochondrial import receptors Tom20 and Tom70 in vitro suggests a chaperone displacement mechanism. J Biol Chem 286:32208–32219

    PubMed  CAS  Google Scholar 

  • Fiumera HL, Broadley SA, Fox TD (2007) Translocation of mitochondrially synthesized Cox2 domains from the matrix to the intermembrane space. Mol Cell Biol 27:4664–4673

    PubMed  CAS  Google Scholar 

  • Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer HE et al (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 11:226–233

    PubMed  CAS  Google Scholar 

  • Frazier AE, Taylor RD, Mick DU, Warscheid B, Stoepel N, Meyer HE, Ryan MT, Guiard B, Rehling P (2006) Mdm38 interacts with ribosomes and is a component of the mitochondrial protein export machinery. J Cell Biol 172:553–564

    PubMed  CAS  Google Scholar 

  • Gabriel K, Milenkovic D, Chacinska A, Muller J, Guiard B, Pfanner N, Meisinger C (2007) Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J Mol Biol 365:612–620

    PubMed  CAS  Google Scholar 

  • Gavel Y, von Heijne G (1992) The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins. Eur J Biochem 205:1207–1215

    PubMed  CAS  Google Scholar 

  • Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N, Rehling P (2002) The mitochondrial presequence translocase. An essential role of Tim50 in directing preproteins to the import channel. Cell 111:507–518

    PubMed  CAS  Google Scholar 

  • Gentle I, Gabriel K, Beech P, Waller R, Lithgow T (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24

    PubMed  CAS  Google Scholar 

  • Glick BS, von Heijne G (1996) Saccharomyces cerevisiae mitochondria lack a bacterial-type Sec machinery. Protein Sci 5:1–2

    Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    PubMed  CAS  Google Scholar 

  • Gruschke S, Grone K, Heublein M, Holz S, Israel L, Imhof A, Herrmann JM, Ott M (2010) Proteins at the polypeptide tunnel exit of the yeast mitochondrial ribosome. J Biol Chem 285:19022–19028

    PubMed  CAS  Google Scholar 

  • Gruschke S, Kehrein K, Rompler K, Grone K, Israel L, Imhof A, Herrmann JM, Ott M (2011) Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. J Cell Biola 193:1101–1114

    CAS  Google Scholar 

  • Habib SJ, Waizenegger T, Lech M, Neupert W, Rapaport D (2005) Assembly of the TOB complex of mitochondria. J Biol Chem 280:6434–6440

    PubMed  CAS  Google Scholar 

  • Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL (2010a) Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes. J Biol Chem 285:28353–28362

    PubMed  CAS  Google Scholar 

  • Haque ME, Spremulli LL, Fecko CJ (2010b) Identification of protein-protein and protein-ribosome interacting regions of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L. J Biol Chem 285:34991–34998

    PubMed  CAS  Google Scholar 

  • Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14:340–345

    PubMed  CAS  Google Scholar 

  • Harner M, Neupert W, Deponte M (2011) Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J 30:3232–3241

    PubMed  CAS  Google Scholar 

  • He S, Fox TD (1997) Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol Biol Cell 8:1449–1460

    PubMed  CAS  Google Scholar 

  • Hell K, Herrmann J, Pratje E, Neupert W, Stuart RA (1997) Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett 418:367–370

    PubMed  CAS  Google Scholar 

  • Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA (1998) Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci USA 95:2250–2255

    PubMed  CAS  Google Scholar 

  • Hell K, Neupert W, Stuart RA (2001) Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20:1281–1288

    PubMed  CAS  Google Scholar 

  • Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781–27788

    PubMed  CAS  Google Scholar 

  • Herlan M, Bornhovd C, Hell K, Neupert W, Reichert AS (2004) Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol 165:167–173

    PubMed  CAS  Google Scholar 

  • Herrmann JM (2011) MINOS is plus: a Mitofilin complex for mitochondrial membrane contacts. Dev Cell 21:599–600

    PubMed  CAS  Google Scholar 

  • Herrmann JM, Riemer J (2010) The intermembrane space of mitochondria. Antioxid Redox Signal 13:1341–1358

    PubMed  CAS  Google Scholar 

  • Herrmann JM, Koll H, Cook RA, Neupert W, Stuart RA (1995) Topogenesis of cytochrome oxidase subunit II – mechanisms of protein export from the mitochondrial matrix. J Biol Chem 270:27079–27086

    PubMed  CAS  Google Scholar 

  • Herrmann JM, Neupert W, Stuart RA (1997) Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear encoded Oxa1p. EMBO J 16:2217–2226

    PubMed  CAS  Google Scholar 

  • Higy M, Junne T, Spiess M (2004) Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43:12716–12722

    PubMed  CAS  Google Scholar 

  • Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395:516–521

    PubMed  CAS  Google Scholar 

  • Hines V, Brandt A, Griffiths G, Horstmann H, Brütsch H, Schatz G (1990) Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J 9:3191–3200

    PubMed  CAS  Google Scholar 

  • Hönlinger A, Kübrich M, Moczko M, Gärtner F, Mallet L, Bussereau F, Eckerskorn C, Lottspeich F, Dietmeier K, Jacquet M et al (1995) The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol Cell Biol 15:3382–3389

    PubMed  Google Scholar 

  • Hönlinger A, Bömer U, Alconada A, Eckerskorn C, Lottspeich F, Dietmeier K, Pfanner N (1996) Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J 15:2125–2137

    PubMed  Google Scholar 

  • Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195:323–340

    PubMed  CAS  Google Scholar 

  • Houben EN, Urbanus ML, Van Der Laan M, Ten Hagen-Jongman CM, Driessen AJ, Brunner J, Oudega B, Luirink J (2002) YidC and SecY mediate membrane insertion of a Type I transmembrane domain. J Biol Chem 277:35880–35886

    PubMed  CAS  Google Scholar 

  • Hwang DK, Claypool SM, Leuenberger D, Tienson HL, Koehler CM (2007) Tim54p connects inner membrane assembly and proteolytic pathways in the mitochondrion. J Cell Biol 178:1161–1175

    PubMed  CAS  Google Scholar 

  • Iwata K, Nakai M (1998) Interaction between mitochondrial precursor proteins and cytosolic soluble domains of mitochondrial import receptors, Tom20 and Tom70, measured by surface plasmon resonance. Biochem Biophys Res Commun 253:648–652

    PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    PubMed  CAS  Google Scholar 

  • Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal hydrophilic region of Oxa1. EMBO J 22:6438–6447

    PubMed  CAS  Google Scholar 

  • Jia L, Kaur J, Stuart RA (2009) Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly. Eukaryot Cell 8:1792–1802

    PubMed  CAS  Google Scholar 

  • Jiang JH, Davies JK, Lithgow T, Strugnell RA, Gabriel K (2011) Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of beta-barrel protein assembly machines. Mol Microbiol 82:976–987

    PubMed  CAS  Google Scholar 

  • Kaur J, Stuart RA (2011) Truncation of the Mrp20 protein reveals new ribosome-assembly subcomplex in mitochondria. EMBO Rep 12:950–955

    PubMed  CAS  Google Scholar 

  • Kawano S, Yamano K, Naoe M, Momose T, Terao K, Nishikawa S, Watanabe N, Endo T (2009) Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. Proc Natl Acad Sci USA 106:14403–14407

    PubMed  CAS  Google Scholar 

  • Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D (2008) Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J Cell Sci 121:1990–1998

    PubMed  CAS  Google Scholar 

  • Kerscher O, Holder J, Srinivasan M, Leung RS, Jensen RE (1997) The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J Cell Biol 139: 1663–1675

    PubMed  CAS  Google Scholar 

  • Kerscher O, Sepuri NB, Jensen RE (2000) Tim18p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell 11:103–116

    PubMed  CAS  Google Scholar 

  • Kiebler M, Keil P, Schneider H, van der Klei IJ, Pfanner N, Neupert W (1993) The mitochondrial receptor complex: a central role of MOM22 in mediating preprotein transfer from receptors to the general insertion pore. Cell 74:483–492

    PubMed  CAS  Google Scholar 

  • Klingenberg M (2009) Cardiolipin and mitochondrial carriers. Biochim Biophys Acta 1788:2048–2058

    PubMed  CAS  Google Scholar 

  • Koehler CM, Murphy MP, Bally NA, Leuenberger D, Oppliger W, Dolfini L, Junne T, Schatz G, Or E (2000) Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol Cell Biol 20:1187–1193

    PubMed  CAS  Google Scholar 

  • Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353

    PubMed  CAS  Google Scholar 

  • Komiya T, Rospert S, Schatz G, Mihara K (1997) Binding of mitochondrial precursor proteins to the cytoplasmic domains of the import receptors Tom70 and Tom20 is determined by cytoplasmic chaperones. EMBO J 16:4267–4275

    PubMed  CAS  Google Scholar 

  • Kovermann P, Truscott KN, Guiard B, Rehling P, Sepuri NB, Muller H, Jensen RE, Wagner R, Pfanner N (2002) Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell 9:363–373

    PubMed  CAS  Google Scholar 

  • Kozany C, Mokranjac D, Sichting M, Neupert W, Hell K (2004) The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 11:234–241

    PubMed  CAS  Google Scholar 

  • Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N (2003) An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523

    PubMed  CAS  Google Scholar 

  • Krayl M, Lim JH, Martin F, Guiard B, Voos W (2007) A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol Cell Biol 27:411–425

    PubMed  CAS  Google Scholar 

  • Künkele K-P, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93:1009–1019

    PubMed  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    PubMed  CAS  Google Scholar 

  • Lee J, Hofhaus G, Lisowsky T (2000) Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett 477:62–66

    PubMed  CAS  Google Scholar 

  • Lionaki E, de Marcos LC, Baud C, Vougioukalaki M, Panayotou G, Tokatlidis K (2008) The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain. J Biol Chem 283:15747–15753

    PubMed  CAS  Google Scholar 

  • Lithgow T, Junne T, Suda K, Gratzer S, Schatz G (1994a) The mitochondrial outer membrane protein Mas22p is essential for protein import and viability of yeast. Proc Natl Acad Sci USA 91:11973–11977

    PubMed  CAS  Google Scholar 

  • Lithgow T, Junne T, Wachter C, Schatz G (1994b) Yeast mitochondria lacking the two import receptors Mas20p and Mas70p can efficiently and specifically import precursor proteins. J Biol Chem 269:15325–15330

    PubMed  CAS  Google Scholar 

  • Lohret TA, Jensen RE, Kinnally KW (1997) Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel, MCC. J Cell Biol 137:377–386

    PubMed  CAS  Google Scholar 

  • Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J (2009) Systematic analysis of the twin cx9c protein family. J Mol Biol 393:356–368

    PubMed  CAS  Google Scholar 

  • Lu H, Allen S, Wardleworth L, Savory P, Tokatlidis K (2004) Functional TIM10 chaperone assembly is redox-regulated in vivo. J Biol Chem 279:18952–18958

    PubMed  CAS  Google Scholar 

  • Lupo D, Vollmer C, Deckers M, Mick DU, Tews I, Sinning I, Rehling P (2011) Mdm38 is a 14-3-3-like receptor and associates with the protein synthesis machinery at the inner mitochondrial membrane. Traffic 12:1457–1466

    PubMed  CAS  Google Scholar 

  • Lutz T, Neupert W, Herrmann JM (2003) Import of small Tim proteins into the mitochondrial intermembrane space. EMBO J 22:4400–4408

    PubMed  CAS  Google Scholar 

  • Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW (2007) Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J Biol Chem 282:3584–3593

    PubMed  CAS  Google Scholar 

  • McQuibban GA, Saurya S, Freeman M (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423:537–541

    PubMed  CAS  Google Scholar 

  • Meier S, Neupert W, Herrmann JM (2005a) Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J Biol Chem 280:7777–7785

    PubMed  CAS  Google Scholar 

  • Meier S, Neupert W, Herrmann JM (2005b) Proline residues of transmembrane domains determine the sorting of inner membrane proteins in mitochondria. J Cell Biol 170:881–888

    PubMed  CAS  Google Scholar 

  • Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU, Hutu DP, Voos W, Truscott KN, Chacinska A, Pfanner N et al (2006) Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312:1523–1526

    PubMed  CAS  Google Scholar 

  • Meisinger C, Wiedemann N, Rissler M, Strub A, Milenkovic D, Schonfisch B, Muller H, Kozjak V, Pfanner N (2006) Mitochondrial protein sorting: differentiation of beta-barrel assembly by Tom7-mediated segregation of Mdm10. J Biol Chem 281:22819–22826

    PubMed  CAS  Google Scholar 

  • Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069

    PubMed  CAS  Google Scholar 

  • Mesecke N, Bihlmaier K, Grumbt B, Longen S, Terziyska N, Hell K, Herrmann JM (2008) The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep 9:1107–1113

    PubMed  CAS  Google Scholar 

  • Michaelis G, Esser K, Tursun B, Stohn JP, Hanson S, Pratje E (2005) Mitochondrial signal peptidases of yeast: the rhomboid peptidase Pcp1 and its substrate cytochrome c peroxidase. Gene 354:58–63

    PubMed  CAS  Google Scholar 

  • Milenkovic D, Ramming T, Muller JM, Wenz LS, Gebert N, Schulze-Specking A, Stojanovski D, Rospert S, Chacinska A (2009) Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol Biol Cell 20(10):2530–2539

    PubMed  CAS  Google Scholar 

  • Model K, Meisinger C, Prinz T, Wiedemann N, Truscott KN, Pfanner N, Ryan MT (2001) Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Biol 8:361–370

    PubMed  CAS  Google Scholar 

  • Model K, Meisinger C, Kuhlbrandt W (2008) Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383:1049–1057

    PubMed  CAS  Google Scholar 

  • Mokranjac D, Paschen SA, Kozany C, Prokisch H, Hoppins SC, Nargang FE, Neupert W, Hell K (2003a) Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 22:816–825

    PubMed  CAS  Google Scholar 

  • Mokranjac D, Sichting M, Neupert W, Hell K (2003b) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22:4945–4956

    PubMed  CAS  Google Scholar 

  • Mokranjac D, Popov-Celeketic D, Hell K, Neupert W (2005) Role of Tim21 in mitochondrial translocation contact sites. J Biol Chem 280:23437–23440

    PubMed  CAS  Google Scholar 

  • Mokranjac D, Bourenkov G, Hell K, Neupert W, Groll M (2006) Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J 25:4675–4685

    PubMed  CAS  Google Scholar 

  • Morgan B, Ang SK, Yan G, Lu H (2009) Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins. J Biol Chem 284:6818–6825

    PubMed  CAS  Google Scholar 

  • Muller JE, Papic D, Ulrich T, Grin I, Schutz M, Oberhettinger P, Tommassen J, Linke D, Dimmer KS, Autenrieth IB et al (2011) Mitochondria can recognize and assemble fragments of a beta-barrel structure. Mol Biol Cell 22:1638–1647

    PubMed  Google Scholar 

  • Murphy MP, Leuenberger D, Curran SP, Oppliger W, Koehler CM (2001) The essential function of the small Tim proteins in the TIM22 import pathway does not depend on formation of the soluble 70-kilodalton complex. Mol Cell Biol 21:6132–6138

    PubMed  CAS  Google Scholar 

  • Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O (2009) Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 284:30200–30208

    PubMed  CAS  Google Scholar 

  • Nagamori S, Smirnova IN, Kaback HR (2004) Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62

    PubMed  CAS  Google Scholar 

  • Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA (2010) S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10:573–578

    PubMed  CAS  Google Scholar 

  • Naoe M, Ohwa Y, Ishikawa D, Ohshima C, Nishikawa S, Yamamoto H, Endo T (2004) Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space. J Biol Chem 279:47815–47821

    PubMed  CAS  Google Scholar 

  • Nargang FE, Preuss M, Neupert W, Herrmann JM (2002) The Oxa1 protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 277:12846–12853

    PubMed  CAS  Google Scholar 

  • Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279:30307–30315

    PubMed  CAS  Google Scholar 

  • Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656

    PubMed  CAS  Google Scholar 

  • Okamoto K, Brinker A, Paschen SA, Moarefi I, Hayer-Hartl M, Neupert W, Brunner M (2002) The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation. EMBO J 21:3659–3671

    PubMed  CAS  Google Scholar 

  • Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM (2006) Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J 25:1603–1610

    PubMed  CAS  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    PubMed  CAS  Google Scholar 

  • Palmieri F, Bisaccia F, Iacobazzi V, Indiveri C, Zara V (1992) Mitochondrial substrate carriers. Biochim Biophys Acta 1101:223–227

    PubMed  CAS  Google Scholar 

  • Paschen SA, Waizenegger T, Stan T, Preuss M, Cyrklaff M, Hell K, Rapaport D, Neupert W (2003) Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426:862–866

    PubMed  CAS  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    PubMed  CAS  Google Scholar 

  • Peixoto PM, Grana F, Roy TJ, Dunn CD, Flores M, Jensen RE, Campo ML (2007) Awaking TIM22, a dynamic ligand-gated channel for protein insertion in the mitochondrial inner membrane. J Biol Chem 282:18694–18701

    PubMed  CAS  Google Scholar 

  • Perez-Martinez X, Broadley SA, Fox TD (2003) Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO J 22:5951–5961

    PubMed  CAS  Google Scholar 

  • Perry AJ, Hulett JM, Likic VA, Lithgow T, Gooley PR (2006) Convergent evolution of receptors for protein import into mitochondria. Curr Biol 16:221–229

    PubMed  CAS  Google Scholar 

  • Popov-Celeketic D, Mapa K, Neupert W, Mokranjac D (2008) Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria. EMBO J 27:1469–1480

    PubMed  CAS  Google Scholar 

  • Popov-Celeketic D, Waegemann K, Mapa K, Neupert W, Mokranjac D (2011) Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex. EMBO Rep 12:542–548

    PubMed  CAS  Google Scholar 

  • Preuss M, Leonhard K, Hell K, Stuart RA, Neupert W, Herrmann JM (2001) Mba1, a novel component of the mitochondrial protein export machinery of the yeast Saccharomyces cerevisiae. J Cell Biol 153:1085–1096

    PubMed  CAS  Google Scholar 

  • Price CE, Otto A, Fusetti F, Becher D, Hecker M, Driessen AJ (2010) Differential effect of YidC depletion on the membrane proteome of Escherichia coli under aerobic and anaerobic growth conditions. Proteomics 10:3235–3247

    PubMed  CAS  Google Scholar 

  • Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warscheid B, Lithgow T, Meisinger C, Schneider A (2011) Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol 21:1738–1743

    PubMed  CAS  Google Scholar 

  • Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, Korner C, Jagasia R, Keil T, Baumeister W et al (2009) Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 185:1047–1063

    PubMed  CAS  Google Scholar 

  • Rak M, Tzagoloff A (2009) F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase. Proc Natl Acad Sci USA 106:18509–18514

    PubMed  CAS  Google Scholar 

  • Rao S, Gerbeth C, Harbauer A, Mikropoulou D, Meisinger C, Schmidt O (2011) Signaling at the gate: phosphorylation of the mitochondrial protein import machinery. Cell Cycle 10: 2083–2090

    PubMed  CAS  Google Scholar 

  • Rimmer KA, Foo JH, Ng A, Petrie EJ, Shilling PJ, Perry AJ, Mertens HD, Lithgow T, Mulhern TD, Gooley PR (2011) Recognition of mitochondrial targeting sequences by the import receptors Tom20 and Tom22. J Mol Biol 405:804–818

    PubMed  CAS  Google Scholar 

  • Rissler M, Wiedemann N, Pfannschmidt S, Gabriel K, Guiard B, Pfanner N, Chacinska A (2005) The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J Mol Biol 353:485–492

    PubMed  CAS  Google Scholar 

  • Rojo EE, Guiard B, Neupert W, Stuart RA (1998) Sorting of D-lactate dehydrogenase to the inner membrane of mitochondria: analysis of topogenic signal and energetic requirements. J Biol Chem 273:8040–8047

    PubMed  CAS  Google Scholar 

  • Rojo EE, Guiard B, Neupert W, Stuart RA (1999) N-terminal tail export from the mitochondrial matrix. Adherence to the prokaryotic “positive-inside” rule of membrane protein topology. J Biol Chem 274:19617–19622

    PubMed  CAS  Google Scholar 

  • Samuelson JC, Chen M, Jiang F, Möller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406:637–641

    PubMed  CAS  Google Scholar 

  • Schlossmann J, Dietmeier K, Pfanner N, Neupert W (1994) Specific recognition of mitochondrial preproteins by the cytosolic domain of the import receptor MOM72. J Biol Chem 269:11893–11901

    PubMed  CAS  Google Scholar 

  • Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP, Stojanovski D, Schonfisch B, Guiard B, Sickmann A, Pfanner N et al (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144:227–239

    PubMed  CAS  Google Scholar 

  • Schneider H-C, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M, Neupert W (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371:768–774

    PubMed  CAS  Google Scholar 

  • Schneider H-C, Westermann B, Neupert W, Brunner M (1996) The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import. EMBO J 15:5796–5803

    PubMed  CAS  Google Scholar 

  • Schneider A, Bursac D, Lithgow T (2008) The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol 18:12–18

    PubMed  CAS  Google Scholar 

  • Schulz C, Lytovchenko O, Melin J, Chacinska A, Guiard B, Neumann P, Ficner R, Jahn O, Schmidt B, Rehling P (2011) Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex. J Cell Biol 195:643–656

    PubMed  CAS  Google Scholar 

  • Schwartz MP, Matouschek A (1999) The dimensions of the protein import channels in the outer and inner mitochondrial membranes. Proc Natl Acad Sci USA 96:13086–13090

    PubMed  CAS  Google Scholar 

  • Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19:542–549

    PubMed  CAS  Google Scholar 

  • Serek J, Bauer-Manz G, Struhalla G, Van Den Berg L, Kiefer D, Dalbey R, Kuhn A (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23:294–301

    PubMed  CAS  Google Scholar 

  • Shiota T, Mabuchi H, Tanaka-Yamano S, Yamano K, Endo T (2011) In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc Natl Acad Sci USA 108:15179–15183

    PubMed  CAS  Google Scholar 

  • Sideris DP, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, Banci L, Bertini I, Tokatlidis K (2009) A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. J Cell Biol 187:1007–1022

    PubMed  CAS  Google Scholar 

  • Sirrenberg C, Bauer MF, Guiard B, Neupert W, Brunner M (1996) Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384:582–585

    PubMed  CAS  Google Scholar 

  • Sirrenberg C, Endres M, Fölsch H, Stuart RA, Neupert W, Brunner M (1998) Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11p and Tim12/Mrs5p. Nature 391:912–915

    PubMed  CAS  Google Scholar 

  • Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ (2007) Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 35:4686–4703

    PubMed  CAS  Google Scholar 

  • Söllner T, Griffiths G, Pfaller R, Pfanner N, Neupert W (1989) MOM19, an import receptor for mitochondrial precursor proteins. Cell 59:1061–1070

    PubMed  Google Scholar 

  • Söllner T, Pfaller R, Griffiths G, Pfanner N, Neupert W (1990) A mitochondrial import receptor for the ATP/ADP carrier. Cell 62:107–115

    PubMed  Google Scholar 

  • Stenberg F, von Heijne G, Daley DO (2007) Assembly of the cytochrome bo 3 complex. J Mol Biol 371:765–773

    PubMed  CAS  Google Scholar 

  • Stiburek L, Fornuskova D, Wenchich L, Pejznochova M, Hansikova H, Zeman J (2007) Knockdown of human Oxa1l impairs the biogenesis of F(1)F(o)-ATP synthase and NADH:ubiquinone oxidoreductase. J Mol Biol 374:506–516

    PubMed  CAS  Google Scholar 

  • Suzuki H, Maeda M, Mihara K (2002) Characterization of rat TOM70 as a receptor of the preprotein translocase of the mitochondrial outer membrane. J Cell Sci 115:1895–1905

    PubMed  CAS  Google Scholar 

  • Szyrach G, Ott M, Bonnefoy N, Neupert W, Herrmann JM (2003) Ribosome binding to the Oxa1 complex facilitates cotranslational protein insertion in mitochondria. EMBO J 22:6448–6457

    PubMed  CAS  Google Scholar 

  • Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    PubMed  CAS  Google Scholar 

  • Tamai S, Iida H, Yokota S, Sayano T, Kiguchiya S, Ishihara N, Hayashi J, Mihara K, Oka T (2008) Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L. J Cell Sci 121:2588–2600

    PubMed  CAS  Google Scholar 

  • Tatsuta T, Augustin S, Nolden M, Friedrichs B, Langer T (2007) m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J 26:325–335

    PubMed  CAS  Google Scholar 

  • Terziyska N, Lutz T, Kozany C, Mokranjac D, Mesecke N, Neupert W, Herrmann JM, Hell K (2005) Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett 579:179–184

    PubMed  CAS  Google Scholar 

  • Terziyska N, Grumbt B, Kozany C, Hell K (2009) Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. J Biol Chem 284:1353–1363

    PubMed  CAS  Google Scholar 

  • Tienson HL, Dabir DV, Neal SE, Loo R, Hasson SA, Boontheung P, Kim SK, Loo JA, Koehler CM (2009) Reconstitution of the mia40-erv1 oxidative folding pathway for the small Tim proteins. Mol Biol Cell 20:3481–3490

    PubMed  CAS  Google Scholar 

  • Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJ, Rassow J, Pfanner N, Wagner R (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol 8:1074–1082

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    PubMed  CAS  Google Scholar 

  • van der Klei I, Veenhuis M, Neupert W (1994) A morphological view on mitochondrial protein targeting. Microsc Res Tech 27:284–293

    PubMed  Google Scholar 

  • van der Laan M, Houben EN, Nouwen N, Luirink J, Driessen AJ (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Rep 2:519–523

    PubMed  Google Scholar 

  • van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165:213–222

    PubMed  Google Scholar 

  • van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N (2006) A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol 16:2271–2276

    PubMed  Google Scholar 

  • van der Laan M, Meinecke M, Dudek J, Hutu DP, Lind M, Perschil I, Guiard B, Wagner R, Pfanner N, Rehling P (2007) Motor-free mitochondrial presequence translocase drives membrane ­integration of preproteins. Nat Cell Biol 9:1152–1159

    PubMed  Google Scholar 

  • Vergnolle MA, Baud C, Golovanov AP, Alcock F, Luciano P, Lian LY, Tokatlidis K (2005) Distinct domains of small Tims involved in subunit interaction and substrate recognition. J Mol Biol 351:839–849

    PubMed  CAS  Google Scholar 

  • Vögtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N et al (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–439

    PubMed  Google Scholar 

  • von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707

    PubMed  Google Scholar 

  • von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–458

    Google Scholar 

  • Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    PubMed  CAS  Google Scholar 

  • Wagner S, Pop O, Haan GJ, Baars L, Koningstein G, Klepsch MM, Genevaux P, Luirink J, de Gier JW (2008) Biogenesis of MalF and the MalFGK2 maltose transport complex in Escherichia coli requires YidC. J Biol Chem 283:17881–17890

    PubMed  CAS  Google Scholar 

  • Waizenegger T, Stan T, Neupert W, Rapaport D (2003) Signal-anchor domains of proteins of the outer membrane of mitochondria: structural and functional characteristics. J Biol Chem 278:42064–42071

    PubMed  CAS  Google Scholar 

  • Walther DM, Bos MP, Rapaport D, Tommassen J (2010) The mitochondrial porin, VDAC, has retained the ability to be assembled in the bacterial outer membrane. Mol Biol Evol 27:887–895

    PubMed  CAS  Google Scholar 

  • Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C et al (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated ­mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658

    PubMed  CAS  Google Scholar 

  • Watson K (1972) The organization of ribosomal granules within mitochondrial structures of ­aerobic and anaerobic cells of Saccharomyces cerevisae. J Cell Biol 55:721–726

    PubMed  CAS  Google Scholar 

  • Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM (2006) Crystal structure of the ­mitochondrial chaperone TIM9-10 reveals a six-bladed alpha-propeller. Mol Cell 21:123–133

    PubMed  CAS  Google Scholar 

  • White SH, von Heijne G (2004) The machinery of membrane protein assembly. Curr Opin Struct Biol 14:397–404

    PubMed  CAS  Google Scholar 

  • Wickström D, Wagner S, Simonsson P, Pop O, Baars L, Ytterberg AJ, van Wijk KJ, Luirink J, de Gier JW (2011) Characterization of the consequences of YidC depletion on the inner membrane proteome of E. coli using 2D Blue Native/SDS-PAGE. J Mol Biol 409:124–135

    PubMed  Google Scholar 

  • Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S, Endo T (2002) Tim50 Is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111:519–528

    PubMed  CAS  Google Scholar 

  • Yamano K, Kuroyanagi-Hasegawa M, Esaki M, Yokota M, Endo T (2008a) Step-size analyses of the mitochondrial Hsp70 import motor reveal the Brownian ratchet in operation. J Biol Chem 283:27325–27332

    PubMed  CAS  Google Scholar 

  • Yamano K, Yatsukawa Y, Esaki M, Hobbs AE, Jensen RE, Endo T (2008b) Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J Biol Chem 283:3799–3807

    PubMed  CAS  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50

    PubMed  CAS  Google Scholar 

  • Zeth K (2010) Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. Biochim Biophys Acta 1797:1292–1299

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes M. Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herrmann, J.M., Longen, S., Weckbecker, D., Depuydt, M. (2012). Biogenesis of Mitochondrial Proteins. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_3

Download citation

Publish with us

Policies and ethics