Skip to main content

Building Synthetic Systems to Learn Nature’s Design Principles

  • Chapter
  • First Online:
Evolutionary Systems Biology

Abstract

Evolution undoubtedly shapes the architecture of biological systems, yet it is unclear which features of regulatory, metabolic, and signalling circuits have adaptive significance and how the architecture of these circuits constrains or promotes evolutionary processes, such as adaptation to new environments. Experimentally rewiring circuits using genetic engineering and constructing novel circuits in living cells allows direct testing and validation of hypotheses in evolutionary systems biology. Building synthetic genetic systems enables researchers to explore regions of the genotype–phenotype and fitness landscapes that may be inaccessible to more traditional analysis. Here, we review the strategies that allow synthetic systems to be constructed and how evolutionary design principles have advanced these technologies. We also describe how building small genetic regulatory systems can provide insight on the trade-offs that constrain adaptation and can shape the structure of biological networks. In the future, the possibility of building biology de novo at the genome scale means that increasingly sophisticated models of the evolutionary dynamics of networks can be proposed and validated, and will allow us to recreate ancestral systems in the lab. This interplay between evolutionary systems theory and engineering design may illuminate the fundamental limits of performance, robustness, and evolvability of living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez CE (2008) On the origins of arrestin and rhodopsin. BMC Evolutionary Biology 2011 11:238. 8:222

    Google Scholar 

  2. Anderson JC, Clarke EJ et al (2006) “Environmentally controlled invasion of cancer cells by engineered bacteria.” J Mol Biol 355(4):619–627

    Article  PubMed  CAS  Google Scholar 

  3. Anderson JC, Voigt CA, et al. (2007) “Environmental signal integration by a modular AND gate.” Mol Syst Biol 3:133

    Article  PubMed  Google Scholar 

  4. Atkinson MR, Savageau MA, et al. (2003) “Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli.” Cell 113(5):597–607

    Article  PubMed  CAS  Google Scholar 

  5. Bandyopadhyay S, Mehta M, et al. (2010) Rewiring of genetic networks in response to DNA damage. Science 330:1385–1389

    Article  PubMed  CAS  Google Scholar 

  6. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  7. Basu S, Mehreja R, et al. (2004) “Spatiotemporal control of gene expression with pulse-generating networks.” Proc Natl Acad Sci USA 101(17):6355–6360

    Article  PubMed  CAS  Google Scholar 

  8. Baumgartner JW, Kim C, et al. (1994) “Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ.” J Bacteriol 176(4):1157–1163

    PubMed  CAS  Google Scholar 

  9. Bhardwaj N, Kim PM, et al. (2010) Rewiring of transcriptional regulatory networks: hierarchy, rather than connectivity, better reflects the importance of regulators. Sci Signal 3:ra79

    Google Scholar 

  10. Bro C, Knudsen S, et al. (2005). “Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering.” Appl Environ Microbiol 71(11):6465–6472

    Article  PubMed  CAS  Google Scholar 

  11. Butterbrodt T, Thurow C, et al. (2006) Chromatin immunoprecipitation analysis of the tobacco PR-1a- and the truncated CaMV 35S promoter reveals differences in salicylic acid-dependent TGA factor binding and histone acetylation. Plant Mol Biol 61:665–674

    Article  PubMed  CAS  Google Scholar 

  12. Chang DE, Leung S, et al. (2010) “Building biological memory by linking positive feedback loops.” Proc Natl Acad Sci USA 107(1):175–180

    Article  PubMed  CAS  Google Scholar 

  13. Costanzo M, Baryshnikova A, et al. (2010) The genetic landscape of a cell. Science 327:425–431

    Article  PubMed  CAS  Google Scholar 

  14. Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  PubMed  CAS  Google Scholar 

  15. Doolittle WF, Boucher Y, et al. (2003) How big is the iceberg of which organellar genes in nuclear genomes are but the tip?. Philos Trans R Soc Lond B Biol Sci 358:39–57; discussion 57–38

    Google Scholar 

  16. Ellis T, Wang X, et al. (2009) “Diversity-based, model-guided construction of synthetic gene networks with predicted functions.” Nat Biotechnol 27(5):465–471

    Article  PubMed  CAS  Google Scholar 

  17. Elowitz MB, Leibler S (2000) “A synthetic oscillatory network of transcriptional regulators.” Nature 403(6767):335–338

    Article  PubMed  CAS  Google Scholar 

  18. Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat Genet 37:351–352

    Article  PubMed  CAS  Google Scholar 

  19. Fraser HB, Hirsh AE, et al. (2002) Evolutionary rate in the protein interaction network. Science (New York, NY) 296:750–752

    Google Scholar 

  20. Friedland AE, Lu TK, et al. (2009) “Synthetic gene networks that count.” Science 324(5931):1199–1202

    Article  PubMed  CAS  Google Scholar 

  21. Gardner TS, Cantor CR, et al. (2000) “Construction of a genetic toggle switch in Escherichia coli.” Nature 403(6767):339–342

    Article  PubMed  CAS  Google Scholar 

  22. Gophna U, Ofran Y (2011) Lateral acquisition of genes is affected by the friendliness of their products. Proc Nat Acad Sci USA 108:343–348

    Article  PubMed  CAS  Google Scholar 

  23. Graf A, Gasser B, et al. (2008). Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genom 9:390

    Article  Google Scholar 

  24. Guet CC, Elowitz MB, et al. (2002) “Combinatorial synthesis of genetic networks.” Science 296(5572):1466–1470

    Article  PubMed  CAS  Google Scholar 

  25. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806

    Article  PubMed  CAS  Google Scholar 

  26. Hillenmeyer ME, Fung E, et al. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365

    Article  PubMed  CAS  Google Scholar 

  27. Hong K-K, Vongsangnak W, et al. (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Nat Acad Sci 108:12179–12184

    Article  PubMed  CAS  Google Scholar 

  28. Isalan M, Lemerle C, et al. (2008) Evolvability and hierarchy in rewired bacterial gene networks. Nature 452(7189):840–845

    Article  PubMed  CAS  Google Scholar 

  29. Jackson DJ, Macis L, et al. (2011) A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol Biol 11:238

    Article  PubMed  CAS  Google Scholar 

  30. Jain R, Rivera MC, et al. (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Nat Acad Sci USA 96:3801–3806

    Article  PubMed  CAS  Google Scholar 

  31. Jeong H, Mason SP, et al. (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  PubMed  CAS  Google Scholar 

  32. Jovelin R, Phillips PC (2009) Evolutionary rates and centrality in the yeast gene regulatory network. Genome Biol 10:R35

    Article  PubMed  Google Scholar 

  33. Jung KH, Spudich EN, et al. (2001) “An archaeal photosignal-transducing module mediates phototaxis in Escherichia coli.” J Bacteriol 183(21):6365–6371

    Article  PubMed  CAS  Google Scholar 

  34. Katagiri F, Lam E, et al. (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727–730

    Article  PubMed  CAS  Google Scholar 

  35. Kauffman KJ, Pridgen EM, et al. (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol Prog 18:942–950

    Article  PubMed  CAS  Google Scholar 

  36. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc B Biol Sci 365:729–748

    Article  CAS  Google Scholar 

  37. Kobayashi H, Kaern M, et al. (2004) “Programmable cells: interfacing natural and engineered gene networks.” Proc Natl Acad Sci USA 101(22):8414–8419

    Article  PubMed  CAS  Google Scholar 

  38. Krikos A, Conley MP, et al. (1985) “Chimeric chemosensory transducers of Escherichia coli.” Proc Natl Acad Sci USA 82(5):1326–1330

    Article  PubMed  CAS  Google Scholar 

  39. Lèbre S, Becq J, et al. (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130

    Article  PubMed  Google Scholar 

  40. Lee I, Lehner B, et al. (2008) A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40:181–188

    Article  PubMed  CAS  Google Scholar 

  41. Levskaya A, Chevalier AA, et al. (2005) “Synthetic biology: engineering Escherichia coli to see light.” Nature 438(7067):441–442

    Article  PubMed  CAS  Google Scholar 

  42. Limor-Waisberg K, Carmi A, et al. (2011) Specialization versus adaptation: two strategies employed by cyanophages to enhance their translation efficiencies. Nucleic Acids Res 39:6016–6028

    Article  PubMed  CAS  Google Scholar 

  43. Lu C, Zhang Z, et al. (2007) Impacts of yeast metabolic network structure on enzyme evolution. Genome Biol 8:407

    Article  PubMed  Google Scholar 

  44. Mori K, Kawahara T, et al. (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817

    Article  PubMed  CAS  Google Scholar 

  45. Opsahl T, Agneessens F, et al. (2010) Node centrality in weighted networks: Generalizing degree and shortest paths. Soc Network 32:245–251

    Article  Google Scholar 

  46. Ostergaard S, Olsson L, et al. (2000). “Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network.” Nat Biotechnol 18(12):1283–1286

    Article  PubMed  CAS  Google Scholar 

  47. Ozbudak EM, Thattai M, et al. (2002) “Regulation of noise in the expression of a single gene.” Nat Genet 31(1):69–73

    Article  PubMed  CAS  Google Scholar 

  48. Raser JM, O’Shea EK (2005) “Noise in gene expression: origins, consequences, and control.” Science 309(5743):2010–2013

    Article  PubMed  CAS  Google Scholar 

  49. Ronen M, Botstein D (2006) Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. Proc Nat Acad Sci USA 103:389

    Article  PubMed  CAS  Google Scholar 

  50. Samoilov MS, Price G, et al. (2006) “From fluctuations to phenotypes: the physiology of noise.” Sci STKE 2006(366):re17

    Google Scholar 

  51. Schmidt D, Wilson MD, et al. (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science (New York, NY) 328:1036–1040

    Google Scholar 

  52. Simon-Loriere E, Holmes EC (2011) Why do RNA viruses recombine? Nat Rev Microbiol 9:617–626

    Article  PubMed  CAS  Google Scholar 

  53. Skerker JM, Perchuk BS, et al. (2008) “Rewiring the specificity of two-component signal transduction systems.” Cell 133(6):1043–1054

    Article  PubMed  CAS  Google Scholar 

  54. Suel GM, Garcia-Ojalvo J, et al. (2006) “An excitable gene regulatory circuit induces transient cellular differentiation.” Nature 440(7083):545–550

    Article  PubMed  Google Scholar 

  55. Tabor JJ, Levskaya A, et al. (2011) “Multichromatic control of gene expression in Escherichia coli.” J Mol Biol 405(2):315–324

    Article  PubMed  CAS  Google Scholar 

  56. Tabor JJ, Salis HM, et al. (2009) “A synthetic genetic edge detection program.” Cell 137(7):1272–1281

    Article  PubMed  Google Scholar 

  57. Tamsir A, Tabor JJ, et al. (2011) “Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’.” Nature 469(7329):212–215

    Article  PubMed  CAS  Google Scholar 

  58. Tan C, Marguet P, et al. (2009) “Emergent bistability by a growth-modulating positive feedback circuit.” Nat Chem Biol 5(11):842–848

    Article  PubMed  CAS  Google Scholar 

  59. Utsumi R, Brissette RE, et al. (1989) “Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate.” Science 245(4923):1246–1249

    Article  PubMed  CAS  Google Scholar 

  60. Valkonen M, Penttilä M, et al. (2003) Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:2065–2072

    Article  PubMed  CAS  Google Scholar 

  61. van der Walt E, Rybicki EP, et al. (2009) Rapid host adaptation by extensive recombination. J Gen Virol 90:734–746

    Article  PubMed  Google Scholar 

  62. Varsani A, Shepherd DN, et al. (2008) Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J Gen Virol 89:2063–2074

    Article  PubMed  CAS  Google Scholar 

  63. Wang Y, Franzosa EA, et al. (2010) Protein evolution in yeast transcription factor subnetworks. Nucleic Acids Res 38:5959–5969

    Article  PubMed  CAS  Google Scholar 

  64. Wang Y, Zhang X-S, et al. (2009) Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res 37:5943–5958

    Article  PubMed  CAS  Google Scholar 

  65. Weinberger LS, Burnett JC, et al. (2005) “Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity.” Cell 122(2):169–182

    Article  PubMed  CAS  Google Scholar 

  66. Wellner A, Lurie MN, et al. (2007) Complexity, connectivity, and duplicability as barriers to lateral gene transfer. Genome Biol 8:R156

    Article  PubMed  Google Scholar 

  67. Xu Q, Black WP, et al. (2005) “Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera.” J Bacteriol 187(18):6410–6418

    Article  PubMed  CAS  Google Scholar 

  68. Yokobayashi Y, Weiss R, et al. (2002) “Directed evolution of a genetic circuit.” Proc Natl Acad Sci USA 99(26):16587–16591

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis S. Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davidson, E.A., Windram, O.P.F., Bayer, T.S. (2012). Building Synthetic Systems to Learn Nature’s Design Principles. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_19

Download citation

Publish with us

Policies and ethics