Skip to main content

Consequences of Missense Mutations in Yersinia pestis: Efficient Flow of Metabolic Carbon Versus Virulence

  • Conference paper
  • First Online:
Advances in Yersinia Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

Emergence of Yersinia pseudotuberculosis from Yersinia enterocolitica required about 50 million years even though both species remain robust enteropathogens capable of long-term persistence in nature. In contrast, only 20,000 years was required for Y. pseudotuberculosis to diverge into Yersinia pestis, the causative agent of bubonic plague. This brief evolutionary process entailed lateral acquisition of new virulence determinants that mediate flea-borne transmission of the most acute systemic bacterial disease known to man as well as loss of enzymes necessary for endurance in natural environments. As a consequence, numerous metabolic processes of Y. pestis are now inefficient during growth in vitro although they are obviously unimportant if not even beneficial during residence in vivo. These lesions include nutritional requirements, bioenergetics issues, regulatory parameters, and inner membrane integrity. This review addresses the question of whether or not the defects arose by random mutational loss or positive selection. Many of these events, especially those caused by missense mutations, are readily reversible thus raising the specter of an emerging variant capable of both causing plague and prolonged survival in soil and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M, Morelli G, Zhu P et al (2004) Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci USA 101:17837–17842

    Article  PubMed  CAS  Google Scholar 

  • Achtman M, Zurth K, Morelli G et al (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048

    Article  PubMed  CAS  Google Scholar 

  • Anisimov A, Lindler L, Pier G (2004) Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17: 434–464

    Article  PubMed  CAS  Google Scholar 

  • Baugh CL, Lanham JW, Surgalla M (1964) Effects of bicarbonate on growth of Pasteurella pestis II. Carbon dioxide fixation into oxalacetate by cell-free extracts. J Bacteriol 88:1394–1398

    PubMed  CAS  Google Scholar 

  • Bearden SW, Sexton C, Pare J et al (2009) Attenuated enzootic (Pestoides) isolates of Yersinia pestis express active aspartase. Microbiology 155:198–209

    Article  PubMed  CAS  Google Scholar 

  • Beesley ED, Brubaker RR, Janssen WA et al (1967) Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94:19–26

    PubMed  CAS  Google Scholar 

  • Brubaker RR (2004) The recent emergence of plague: a process of felonious evolution. Microb Ecol 47:293–299

    Article  PubMed  CAS  Google Scholar 

  • Brubaker RR (2005) Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun 73:4743–4752

    Article  PubMed  CAS  Google Scholar 

  • Brubaker RR (2007) Intermediary metabolism, Na+, the low calcium-response, and acute disease. Adv Exp Med Biol 603:116–129

    Article  PubMed  Google Scholar 

  • Brubaker RR, Beesley ED, Surgalla MJ (1965) Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149:422–424

    Article  PubMed  CAS  Google Scholar 

  • Brubaker RR, Sulen AJ (1971) Mutations influencing the assimilation of nitrogen by Yersinia pestis. Infect Immun 3:580–588

    PubMed  CAS  Google Scholar 

  • Burrows TW, Bacon GW (1960) V and W antigens in strains of Pasteurella pseudotuberculosis. Brit J Exp Pathol 41:38–44

    CAS  Google Scholar 

  • Burrows TW, Gillett WA (1966) The nutritional requirements of some Pasteurella species. J Gen Microbiol 45:333–345

    Article  PubMed  CAS  Google Scholar 

  • Chain P, Carniel E, Larimer FW et al (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci 101:13826–13831

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Burland V, Plunkett GI et al (2002) Genome sequence of Yersinia pestis KIM. J Bacteriol 104:4601–4611

    Article  Google Scholar 

  • Dreyfus LA, Brubaker RR (1978) Consequences of aspartase deficiency in Yersinia pestis. J Bacteriol 136:757–764

    PubMed  CAS  Google Scholar 

  • Englesberg E (1952) The irreversibility of methionine synthesis from cysteine in Pasteurella pestis. J Bacteriol 63:675–680

    PubMed  CAS  Google Scholar 

  • Ferber DM, Brubaker RR (1981) Plasmids in Yersinia pestis. Infect Immun 31:839–841

    PubMed  CAS  Google Scholar 

  • Fowler JM, Brubaker RR (1994) Physiological basis of the low calcium response in Yersinia pestis. Infect Immun 62:5234–5241

    PubMed  CAS  Google Scholar 

  • Heesemann J, Sing A, Trülzsch K (2006) Yersinia’s stratagem: targeting innate and adaptive immune defense. Curr Opin Microbiol 9:1–7

    Article  Google Scholar 

  • Herbert D (1949) Studies on the nutrition of Pasteurella pestis and factors affecting the growth of isolated cells on an agar surface. Brit J Exp Pathol 30:509–519

    CAS  Google Scholar 

  • Hinnebusch BJ, Perry RD, Schwan TG (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367–370

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Rudolph AE, Cherepanov P et al (2002) Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296:733–735

    Article  PubMed  CAS  Google Scholar 

  • Martinevskii IL (1969) Biology and genetic features of plague and plague-related microbes. Meditsina Press, Moscow

    Google Scholar 

  • Meyer KF, Hightower JA, McCrumb FR (1974) Plague immunization. VI. Vaccination with the fraction 1 antigen of Yersinia pestis. J Infect Dis 129((Suppl)): S13–S18

    Article  PubMed  Google Scholar 

  • Mortlock RP, Brubaker RR (1962) Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis and Pasteurella pseudotuberculosis. J Bacteriol 84:1122–1123

    PubMed  CAS  Google Scholar 

  • Motin VL, Georgescu AM, Fitch JP et al (2004) Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol 186:6298–6305

    Article  PubMed  CAS  Google Scholar 

  • O’Gaora P, Maskel D, Coleman D et al (1989) Cloning and characterisation of the serC and aroA genes of Yersinia enterocolitica, and construction of an aroA mutant. Gene 84:23–30

    Article  PubMed  Google Scholar 

  • Oyston PC, Dorrell N, Williams K et al (2000) The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68:3419–3425

    Article  PubMed  CAS  Google Scholar 

  • Parkhill J, Wren BW, Thomson NR et al (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527

    Article  PubMed  CAS  Google Scholar 

  • Protsenko OA, Anisimov PI, Mosarov OT et al (1983) Detection and characterization of Yersinia pestis plasmids determining pesticin I, fraction 1 antigen and mouse toxin synthesis. Genetika 19:1081–1090

    PubMed  CAS  Google Scholar 

  • Rosqvist R, Skurnik M, Wolf-Watz H (1988) Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334:522–525

    Article  PubMed  CAS  Google Scholar 

  • Skurnik M, Peippo A, Ervelä E (2000) Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol Microbiol 37:316–330

    Article  PubMed  CAS  Google Scholar 

  • Sun YC, Hinnebusch BJ, Darby C (2008) Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci USA 105:8097–8101

    Article  PubMed  CAS  Google Scholar 

  • Thorslund SE, Edgren T, Pettersson J et al (2011) The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS One 6:e16784

    Article  PubMed  CAS  Google Scholar 

  • Viola RE, Lyudmyla Y, Fowler JM et al (2008) A missense mutation causes aspartase-deficiency in Yersinia pestis. Microbiology 154:1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Zahorchak RJ, Charnetzky WT, Little RV et al (1979) Consequences of Ca2+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis. J Bacteriol 39:792–799

    Google Scholar 

  • Zhou D, Tong Z, Song Y et al (2004) Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 186:5147–5152

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Brubaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Brubaker, R.R. (2012). Consequences of Missense Mutations in Yersinia pestis: Efficient Flow of Metabolic Carbon Versus Virulence. In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_4

Download citation

Publish with us

Policies and ethics