Skip to main content

Theory of Polariton Solitons in Semiconductor Microcavities

  • Chapter
  • First Online:
Nonlinear Photonics and Novel Optical Phenomena

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 170))

Abstract

We review the physics behind the formation of localized states of exciton-polaritons, or polariton solitons, in semiconductor microresonators operating in the strong coupling regime. We describe the properties of polariton solitons existing in the vicinity of both the lower- and upper-polariton branches and discuss their linear stability. Strength and sign of polariton dispersion can be controlled by changing the transverse momentum of the pump beam which leads to new degrees of freedom in soliton formation. In particular, we show that pump momenta associated with a positive polariton mass, occurring near the bottom of the lower-polariton branch, favor the formation of stable two- (2D) and one-dimensional (1D) dark solitons. Polaritons with a large momentum exhibit a negative effective mass and lead to the formation of moving 1D bright solitons. An important feature of the strong light–matter interaction is that it allows the existence of 2D bright solitons having a negative effective mass along the direction of the pump momentum and a positive effective mass along the orthogonal direction. Saturation of photon–exciton coupling can support stable bright solitons near the upper-polariton branch above the excitonic resonance. Taking into account the finite mass of excitons leads to modulational instability (filamentation) of the transverse soliton profile and the generation of free excitons. This instability either entails the generation of stationary nanoscale periodic patterns localized on the soliton background or to an explosive oscillatory soliton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Scott, Nonlinear Science (Oxford University Press, Oxford, 1999)

    Google Scholar 

  2. Y. Kivshar, G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2001)

    Google Scholar 

  3. N. Akmediev, A. Ankiewicz (eds.) Dissipative Solitons (Springer, Berlin, 2005)

    Google Scholar 

  4. N.N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, Berlin, 2002)

    MATH  Google Scholar 

  5. D. Michaelis, U. Peschel, F. Lederer, Multistable localized structures and superlattices in semiconductor optical resonators. Phys. Rev. A 56, 3366(R) (1997)

    Google Scholar 

  6. V.B. Taranenko, I. Ganne, R. Kuszelewicz, C.O. Weiss, Spatial solitons in a semiconductor microresonator. Appl. Phys. B 72, 377 (2001)

    Article  ADS  Google Scholar 

  7. U. Peschel, D. Michaelis, C.O. Weiss, Spatial solitons in optical cavities. IEEE J. Quant. Electron. 39, 51 (2003)

    Article  ADS  Google Scholar 

  8. Ye. Larionova, C.O. Weiss, O. Egorov, Dark solitons in semiconductor resonators. Opt. Express 13, 8308 (2005)

    Google Scholar 

  9. M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, W.J. Firth, Spatial soliton pixels in semiconductor devices. Phys. Rev. Lett. 79, 2042 (1997)

    Article  ADS  Google Scholar 

  10. S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699 (2002)

    Article  ADS  Google Scholar 

  11. Y. Tanguy, T. Ackemann, W.J. Firth, R. Jäger, Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett. 100, 013907 (2008)

    Article  ADS  Google Scholar 

  12. G.S. McDonald, W.J. Firth, Spatial solitary-wave optical memory. J. Opt. Soc. Am. B 7, 1328 (1990)

    Article  ADS  Google Scholar 

  13. F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J.R. Tredicce, T. Ackemann, A.J. Scroggie, W.J. Firth, G.L. Oppo, G. Tissoni, R. Jäger, All-optical delay line using semiconductor cavity solitons. Appl. Phys. Lett. 92, 011101 (2008)

    Article  ADS  Google Scholar 

  14. T. Ackemann, W.J. Firth, G.L. Oppo, Fundamentals and applications of spatial dissipative solitons in photonic devices. Adv. Atom. Mol. Opt. Phys. 57, 324 (2009)

    Google Scholar 

  15. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555 (1958)

    Article  ADS  MATH  Google Scholar 

  16. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  17. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductots, 2nd edn. (World Scientific Publishing Co. Pte. Ltd., Hong Kong, 1993)

    Google Scholar 

  18. R. Houdre, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J.O′ Gorman, B. Roycroft, M. Ilegems, Saturation of the strong-coupling regime in a semiconductor microcavity: free-carrier bleaching of cavity polaritons. Phys. Rev. B 52, 7810 (1995)

    Google Scholar 

  19. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, New York, 2007)

    Book  Google Scholar 

  20. B. Deveaud (ed.) The Physics of Semiconductor Microcavities (Willey-VCH, Weinheim, 2007)

    Google Scholar 

  21. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32, 6601 (1985)

    Article  ADS  Google Scholar 

  22. G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Excitonic Bloch equations for a two-dimensional system of interacting excitons. Phys. Rev. B 61, 13856 (2000)

    Article  ADS  Google Scholar 

  23. E. Burstein, C. Weisbuch (eds.) Confined Electrons and Photons: New Physics and Applications (Plenum, New York, 1995)

    Google Scholar 

  24. S.A. Moskalenko, D.W. Snoke, Bose-Eistein Condensation of Excitons and Biexcitons (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  25. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197 (2004)

    Article  ADS  Google Scholar 

  26. D.G. Lidzey, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S. Walker, M.S. Whittaker, Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 395, 53 (1998)

    Article  ADS  Google Scholar 

  27. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J.  Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  28. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, A. Scherer, Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81 (2006)

    Article  Google Scholar 

  29. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature 443, 409 (2006)

    Google Scholar 

  30. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  31. I. Carusotto, C. Ciuti, Probing microcavity polariton superfluidity through resonant rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)

    Article  ADS  Google Scholar 

  32. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009)

    Article  Google Scholar 

  33. R. Houdre, R.P. Stanley, U. Oesterle, M. Ilegems, C. Weisbuch, Room-temperature cavity polaritons in a semiconductor microcavity. Phys. Rev. B 49, 16761 (1994)

    Article  ADS  Google Scholar 

  34. S. Christopoulos, G. Baldassari, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butte, E. Feltin, J.-F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  35. A. Baas, J.Ph. Karr, H. Eleuch, E. Giacobino, Optical bistability in semiconductor microcavities. Phys. Rev. A 69, 023809 (2004)

    Article  ADS  Google Scholar 

  36. A. Tredicucci, Y. Chen, V. Pellegrini, M. Börger, F. Bassani, Optical bistability of semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 54, 3493 (1996)

    Article  ADS  Google Scholar 

  37. D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, J. Bloch, Optical bistability in a GaAS-based polariton diode. Phys. Rev. Lett. 101, 266402 (2008)

    Article  ADS  Google Scholar 

  38. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547 (2000)

    Article  ADS  Google Scholar 

  39. D.M. Whittaker, Classical treatment of parametric processes in a strong-coupling planar microcavity. Phys. Rev. B 63, 193305 (2001)

    Article  ADS  Google Scholar 

  40. A. Baas, J.-Ph. Karr, M. Romanelli, A. Bramati, E. Giacobino, Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator. Phys. Rev. B 70, 161307(R) (2004)

    Google Scholar 

  41. C. Ciuti, P. Schwendimann, B. Deveaud, A. Quattropani, Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62, 4825(R) (2000)

    Google Scholar 

  42. C. Ciuti, P. Schwendimann, A. Quattropani, Theory of polariton parametric interactions in semiconductor microcavities. Semicond. Sci. Technol. 18, 279 (2003)

    Article  ADS  Google Scholar 

  43. M. Wouters, I. Carusotto, Parametric oscillation threshold of semiconductor microcavities in the strong coupling regime. Phys. Rev. B 75, 075332 (2007)

    Article  ADS  Google Scholar 

  44. D.M. Whittaker, Effects of polariton-energy renormalization in the microcavity optical parametric oscillator. Phys. Rev. B 71, 115301 (2005)

    Article  ADS  Google Scholar 

  45. D.N. Krizhanovskii, S.S. Gavrilov, A.P.D. Love, D. Sanvitto, N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Self-organization of multiple polariton-polariton scattering in semiconductor microcavities. Phys. Rev. B 77, 115336 (2008)

    Article  ADS  Google Scholar 

  46. I.B. Talanina, M.A. Collins, V.M. Agranovich, Polariton solitons in semiconductors. Solid State Communicat. 88, 541 (1993)

    Article  ADS  Google Scholar 

  47. D.V. Skryabin, A.V. Yulin, A. Maimistov, Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity. Phys. Rev. Lett. 96, 163904 (2006)

    Article  ADS  Google Scholar 

  48. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, L.S. Dang, B. Deveaud-Pledran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  49. Ye. Larionova, W. Stolz, C.O. Weiss, Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity. Opt. Lett. 33, 321 (2008)

    Google Scholar 

  50. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martin, A. Lemaitre, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Vina, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291 (2009)

    Article  ADS  Google Scholar 

  51. D. Sanvitto, A. Amo, F.P. Laussy, A. Lemaitre, J. Bloch, C. Tejedor, L. Vina, Polariton condensates put in motion. Nanotechnology 21, 134025 (2010)

    Google Scholar 

  52. A. Amo, D. Sanvitto, L. Vina, Collective dynamics of excitons and polaritons in semiconductor nanostructures. Semicond. Sci. Technol. 25, 043001 (2010)

    Article  ADS  Google Scholar 

  53. A.V. Yulin, O.A. Egorov, F. Lederer, D.V. Skryabin, Dark polariton solitons in semiconductor microcavities. Phys. Rev. A 78, 061801(R) (2008)

    Google Scholar 

  54. O.A. Egorov, D.V. Skryabin, A.V. Yulin, F. Lederer, Bright cavity polariton solitons. Phys. Rev. Lett. 102, 153904 (2009)

    Article  ADS  Google Scholar 

  55. D.V. Skryabin, O.A. Egorov, A.V. Gorbach, F. Lederer, One-dimensional polariton solitons and soliton waveguiding in microcavities. Superlatt. Microstr. 47, 5 (2010)

    Article  ADS  Google Scholar 

  56. O.A. Egorov, A.V. Gorbach, F. Lederer, D.V. Skryabin, Two-dimensional localization of exciton polaritons in microcavities. Phys. Rev. Lett. 105, 073903 (2010)

    Article  ADS  Google Scholar 

  57. O.A. Egorov, D.V. Skryabin, F. Lederer, Polariton solitons due to saturation of the exciton-photon coupling. Phys. Rev. B 82, 165326 (2010)

    Article  ADS  Google Scholar 

  58. L.A. Lugiato, R. Lefever, Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987)

    Article  ADS  Google Scholar 

  59. D.V. Skryabin, W.J. Firth, Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media. Phys. Rev. E 58, 3916 (1998)

    Article  ADS  Google Scholar 

  60. O. Egorov, F. Lederer, Rotating cavity solitons in semiconductor microresonators. Phys. Rev. E 75, 017601 (2007)

    Article  ADS  Google Scholar 

  61. S. Fedorov, D. Michaelis, U. Peschel, C. Etrich, D.V. Skryabin, N. Rosanov, F. Lederer, Effects of spatial inhomogeneities on the dynamics of cavity solitons in quadratically nonlinear media. Phys. Rev. E 64, 036610 (2001)

    Article  ADS  Google Scholar 

  62. O. Egorov, F. Lederer, K. Staliunas, Subdiffractive discrete cavity solitons. Opt. Lett. 32, 2106 (2007)

    Google Scholar 

  63. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Bottleneck effect in the relaxation and photoluminescence of microcavity polaritoms. Phys. Rev. B 56, 7554 (1997)

    Article  ADS  Google Scholar 

  64. D. Gomila, M.A. Matias, P. Colet, Excitability mediated by localized structures in a dissipative nonlinear optical cavity. Phys. Rev. Lett. 94, 063905 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the Federal Ministry of Education and Research (PhoNa)as well as from the UK EPSRC project EP/D079225/1 and the Deutsche Forschungsgemeinschaft (Research unit 532) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Egorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Egorov, O.A., Skryabin, D.V., Lederer, F. (2012). Theory of Polariton Solitons in Semiconductor Microcavities. In: Chen, Z., Morandotti, R. (eds) Nonlinear Photonics and Novel Optical Phenomena. Springer Series in Optical Sciences, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3538-9_6

Download citation

Publish with us

Policies and ethics