Skip to main content

Improved Cosmological Constraints from a Bayesian Hierarchical Model of Supernova Type Ia Data

  • Chapter
  • First Online:
Astrostatistical Challenges for the New Astronomy

Part of the book series: Springer Series in Astrostatistics ((SSIA,volume 1))

  • 1318 Accesses

Abstract

We present a Bayesian hierarchical model for inferring the cosmological parameters from the supernovae type Ia fitted with the SALT-II lightcurve fitter. We demonstrate with simulated data sets that our method delivers tighter statistical constraints on the cosmological parameters over 90% of the time, that it reduces statistical bias typically by a factor ~2–3 and that it has better coverage properties than the usual χ 2 approach. As a further benefit, a full posterior probability distribution for the dispersion of the intrinsic magnitude of SNe is obtained. We apply this method to recent SNIa data, and by combining them with CMB and BAO data we obtain Ωm = 0:28 ± 0:02, ΩΛ = 0:73 ± 0:01 (assuming ω = −1) and Ω m = 0:28 ± 0:01, ω = −0:90 ± 0:05 (assuming flatness; statistical uncertainties only). We constrain the intrinsic dispersion of the B-band magnitude of the SNIa population, obtaining \(\sigma _\mu ^{\text{int}} \) = 0:13 ± 0:01 [mag].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    1 Notice that we neglect correlations between different SNIa, which is reflected in the fact that Σ C takes a block-diagonal form. It would be however very easy to add arbitrary cross-correlations to our formalism (e.g. coming from correlated systematic within survey, for example zero point calibration) by adding such non-block diagonal correlations to Eq. (10.42).

Reference

  1. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., Tonry, J.: Observational Evidence from Supernovae for an Accelerating Universe and a Cos-mological Constant. Astron. J. 116, 1009–1038 (1998). DOI 10.1086/300499

    Article  Google Scholar 

  2. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J., The Supernova Cosmology Project: Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 517, 565–586 (1999). DOI 10.1086/307221

    Article  Google Scholar 

  3. March, M.C., Trotta, R., Berkes, P., Starkman, G.D., Vaudrevange, P.M.: Improved constraints on cosmological parameters from Type Ia supernova data. Mon. Not. R. Astron. Soc. 418, 2308–2329 (2011). DOI 10.1111/j.1365–2966.2011.19584.x

    Article  Google Scholar 

  4. Wang, L., Goldhaber, G., Aldering, G., Perlmutter, S.: Multicolor Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: A Novel Step toward More Precise Distance and Extinction Estimates. Astrophys. J. 590, 944–970 (2003). DOI 10.1086/375020

    Article  Google Scholar 

  5. Conley, A., Goldhaber, G., Wang, L., Aldering, G., Amanullah, R., Commins, E.D., Fadeyev, V., Folatelli, G., Garavini, G., Gibbons, R., Goobar, A., Groom, D.E., Hook, I., Howell, D.A., Kim, A.G., Knop, R.A., Kowalski, M., Kuznetsova, N, Lidman, C., Nobili, S., Nugent, P.E., Pain, R., Perlmutter, S., Smith, E., Spadafora, A.L., Stanishev, V., Strovink, M., Thomas, R.C., Wood-Vasey, W.M., Supernova Cosmology Project: Measurement of Ω m , ΩΛ from a Blind Analysis of Type Ia Supernovae with CMAGIC: Using Color Information to Verify the Acceleration of the Universe. Astrophys. J. 644, 1–20 (2006). DOI 10.1086/503533

    Article  Google Scholar 

  6. Mandel, K.S., Narayan, G., Kirshner, R.P.: Type Ia Supernova Light Curve Inference: Hier-archical Models in the Optical and Near-infrared. Astrophys. J. 731, 120–+ (2011). DOI 10.1088/0004–637X/731/2/120

    Article  Google Scholar 

  7. Mandel, K.S., Narayan, G, Kirshner, R.P.: Type Ia Supernova Light Curve Inference: Hierar-chical Models in the Optical and Near Infrared. arXiv:1011.5910 (2010)

    Google Scholar 

  8. Kessler, R., Becker, A.C., Cinabro: First-Year Sloan Digital Sky Survey-II Supernova Results: Hubble Diagram and Cosmological Parameters. Astrophys. J. Suppl. Ser. 185, 32–84 (2009). DOI 10.1088/0067–0049/185/1/32

    Article  Google Scholar 

  9. Astier, P, Guy, J.: The Supernova Legacy Survey: measurement of OmegaM, OmegaL and w from the first year data set. Astron. Astrophys. 447, 31–48 (2006). DOI 10.1051/0004-6361: 20054185

    Article  Google Scholar 

  10. Kowalski, M., Rubin, D., Aldering, G., Agostinho, R.J., Amadon, A.: Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophys. J. 686, 749–778 (2008). DOI 10.1086/589937

    Article  Google Scholar 

  11. Tripp, R.: A two-parameter luminosity correction for Type IA supernovae. Astron. Astrophys. 331, 815–820 (1998)

    Google Scholar 

  12. Gull, S.: Bayesain Data Analysis: Straight-line fitting. Maximum Entropy and Bayesian Meth-ods pp. 511–518 (1989)

    Google Scholar 

  13. Miknaitis, G., Pignata, G.: The ESSENCE Supernova Survey: Survey Optimization, Observa-tions, and Supernova Photometry. Astrophys. J. 666, 674–693 (2007). DOI 10.1086/519986

    Article  Google Scholar 

  14. Wood-Vasey, W.M., Miknaitis, G, Stubbs, C.W: Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. Astrophys. J. 666, 694–715 (2007). DOI 10.1086/518642

    Article  Google Scholar 

  15. Jha, S., Riess, A.G, Kirshner, R.P.: Improved Distances to Type Ia Supernovae with Multi-color Light-Curve Shapes: MLCS2k2. Astrophys. J. 659, 122–148 (2007). DOI 10.1086/ 512054

    Article  Google Scholar 

  16. Garnavich, P.M., Kirshner, R.P, Challis, P.a.: Constraints on Cosmological Models from Hubble Space Telescope Observations of High-z Supernovae. Astrophys. J., Lett. 493, L53+ (1998). DOI 10.1086/311140

    Article  Google Scholar 

  17. Knop, R.A., Aldering, G, Amanullah, R., Astier, P.: New Constraints on Ω m , ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope. Astrophys. J. 598, 102–137 (2003). DOI 10.1086/378560

    Article  Google Scholar 

  18. Riess, A.G., Strolger, L.: Type Ia Supernova Discoveries at z ≥ 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophys. J. 607, 665–687 (2004). DOI 10.1086/383612

    Article  Google Scholar 

  19. Riess, A.G, Strolger, L.: New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophys. J. 659, 98–121 (2007). DOI 10.1086/510378

    Article  Google Scholar 

  20. Kessler, R., Bernstein, J.P., Cinabro, D., Dilday, B., Frieman, J.A., Jha, S., Kuhlmann, S., Miknaitis, G., Sako, M., Taylor, M., Vanderplas, J.: SNANA: A Public Software Package for Supernova Analysis. Publ. Astron. Soc. Pac. 121, 1028–1035 (2009). DOI 10.1086/605984

    Article  Google Scholar 

  21. Freedman, W.L., Madore, B.F., Gibson, B.K., Ferrarese, L., Kelson, D.D., Sakai, S., Mould, J.R., Kennicutt Jr., R.C., Ford, H.C., Graham, J.A., Huchra, J.P, Hughes, S.M.G., Illingworth, GD., Macri, L.M., Stetson, PB.: Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. Astrophys. J. 553,47–72 (2001). DOI 10.1086/320638

    Article  Google Scholar 

  22. Skilling, J.: Nested Sampling. In: Fischer, R. Preuss, R., To ussaint, U. V. (eds.) American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol. 735, pp. 395–405 (2004). DOI 10.1063/1.1835238

    Google Scholar 

  23. Skilling, J.: Nested sampling for general Bayesian computation. Bayesian Analysis 1, 833– 861 (2006)

    Article  MathSciNet  Google Scholar 

  24. Feroz, F., Hobson, M.P.: Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008). DOI 10.1111/j.1365–2966.2007.12353.x

    Article  Google Scholar 

  25. Feroz, F., Hobson, M.P., Bridges, M.: MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009). DOI 10.1111/j.1365–2966.2009.14548.x

    Article  Google Scholar 

  26. Feroz, F., Cranmer, K., Hobson, M., de Austri, R.R., Trotta, R.: Challenges of Profile Likeli-hood Evaluation in Multi- Dimensional SUSY Scans. arXiv:1101.3296 (2011)

    Google Scholar 

  27. Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Limon, M., Page, L., Spergel, D.N., Halpern, M., Hill, R.S., Kogut, A., Meyer, S.S., Tucker, G.S., We iland, J.L., Wollack, E., Wright, E.L.: Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 180, 330–376 (2009). DOI 10.1088/0067–0049/180/2/330

    Article  Google Scholar 

  28. Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, M.R., Nichol, R.C., Scran-ton, R., Seo, H.J., Tegmark, M., Zheng, Z., Anderson, S.F., Annis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F.J., Connolly, A., Csabai, I., Doi, M., Fukugita, M., Frieman, J.A., Glazebrook, K., Gunn, J.E., Hendry, J.S., Hennessy, G., Ivezić, Z., Kent, S., Knapp, G.R., Lin, H., Loh, Y.S., Lupton, R.H., Margon, B., McKay, T.A., Meiksin, A., Munn, J.A., Pope, A., Richmond, M.W., Schlegel, D., Schneider, D.P., Shimasaku, K., Stoughton, C., Strauss, M.A., SubbaRao, M., Szalay, A.S., Szapudi, I., Tucker, D.L., Yanny, B., Yo rk, D.G.: Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 633, 560–574 (2005). DOI 10.1086/466512

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by travel grants by the Royal Astronom-ical Society and by the Royal Society. MCM was partially supported by a Royal Astronomical Society grant. GDS and PV were supported by a grant from the US-DOE to the CWRU theory group, and by NASA grant NNX07AG89G to GDS. PV was supported by CWRU’s College of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Cristina March .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

March, M.C., Trotta, R., Berkes, P., Starkman, G., Vaudrevange, P. (2013). Improved Cosmological Constraints from a Bayesian Hierarchical Model of Supernova Type Ia Data. In: Hilbe, J. (eds) Astrostatistical Challenges for the New Astronomy. Springer Series in Astrostatistics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3508-2_10

Download citation

Publish with us

Policies and ethics