Skip to main content

Sensors for Vital Signs: Oxygen Sensors

  • Reference work entry
  • First Online:
Handbook of Biochips
  • 2512 Accesses

Abstract

Oxygen measurement in human tissues is very important for informed clinical decisions. This chapter provides an overview of several sensing paradigms that are used for this purpose, such as the Clark electrode, fluorescence quenching, PEBBLEs, optodes, near-infrared spectroscopy, and pulse oximetry. The challenges of designing monolithic low-power pulse oximeter biochips are discussed in detail. Design techniques focused on lowering the oximeter’s power consumption are presented, along with a biochip implementing the first sub-mW fully integrated pulse oximeter front-end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Brazy JE, Lewis DV, Mitnick MH, van der Vliet JFFJ (1985) Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics 75:217–225

    Article  Google Scholar 

  • Clark LC Jr (1956) Monitor and control of blood and tissue oxygen tensions. ASAIO J 2:41–48

    Google Scholar 

  • Elwell CE, Cope M, Edwards AD et al. (1992) Measurement of cerebral blood flow in adult humans using near infrared spectroscopy – methodology and possible errors. Adv Exp Med Biol 317:235–45.

    Google Scholar 

  • Glaros KN (2012) Low-power pulse oximetry and transimpedance amplifiers. Dissertation, Imperial College London

    Google Scholar 

  • Glaros KN, Drakakis EM (2012) A sub-mW fully-integrated pulse oximeter front-end. IEEE Trans Biomed Circuits Syst. https://doi.org/10.1109/TBCAS.2012.2200677

  • Goldman JM, Petterson MT, Kopotic RJ, Barker SJ (2000) Masimo signal extraction pulse oximetry. J Clin Monit Comput 16:475–483

    Article  Google Scholar 

  • Graeme JG (1995) Photodiode amplifiers: op amp solutions. McGraw-Hill Professional, Boston

    Google Scholar 

  • Greisen G (2006) Is near-infrared spectroscopy living up to its promises? Semin Fetal Neonatal Med 11:498–502. https://doi.org/10.1016/j.siny.2006.07.010

    Article  Google Scholar 

  • Hayes MJ, Smith PR (2001) A new method for pulse oximetry possessing inherent insensitivity to artifact. IEEE Trans Biomed Eng 48:452–461

    Article  Google Scholar 

  • Jobsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(80):1264–1267. https://doi.org/10.1126/science.929199

    Article  Google Scholar 

  • Lee Y-EK, Smith R, Kopelman R (2009) Nanoparticle PEBBLE sensors in live cells and in vivo. Annu Rev Anal Chem (Palo Alto, Calif) 2:57–76. https://doi.org/10.1146/annurev.anchem.1.031207.112823

    Article  Google Scholar 

  • Mannheimer PD (2007) The light – tissue interaction of pulse oximetry. Anesth Analg 105:S10

    Article  Google Scholar 

  • Montgomery H, Horwitz O (1950) Oxygen tension of tissues by the polarographic method. I. Introduction: oxygen tension and blood flow of the skin of human extremities. J Clin Invest 29:1120–1130. https://doi.org/10.1172/JCI102349

    Article  Google Scholar 

  • Pujary CJ (2004) Investigation of photodetector optimization in reducing power consumption by a noninvasive pulse oximeter sensor. Dissertation, Worcester Polytechnic Institute

    Google Scholar 

  • Sasaki K, Shi Z, Kopelman R, Masuhara H (1996) Three-dimensional pH microprobing with an optically-manipulated fluorescent particle. Chem Lett 2:141–142

    Article  Google Scholar 

  • Severinghaus JW (2004) First electrodes for blood PO2 and PCO2 determination. J Appl Physiol 97:1599–1600

    Article  Google Scholar 

  • Siegemund M, van Bommel J, Ince C (1999) Assessment of regional tissue oxygenation. Intensive Care Med 25:1044–1060

    Article  Google Scholar 

  • Sokwoo R, Boo-Ho Y, Asada HH (2001) Artifact-resistant power-efficient design of finger-ring plethysmographic sensors. IEEE Trans Biomed Eng 48:795–805

    Article  Google Scholar 

  • Tavakoli MD (2006) An analog VLSI front end for pulse oximetry. Dissertation, MIT

    Google Scholar 

  • Webster JG (1997) Design of pulse oximeters. Institute of Physics Publications, Bristol/Philadelphia

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Drakakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Glaros, K.N., Rogers, M.L., Boutelle, M.G., Drakakis, E.M. (2022). Sensors for Vital Signs: Oxygen Sensors. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_3

Download citation

Publish with us

Policies and ethics