Skip to main content

Basic Cardiac Development: The Heart and Its Electrical Components

  • Chapter
  • First Online:
Ontogeny and Phylogeny of the Vertebrate Heart

Abstract

The heart, an organ simple in function and design, is a muscular pump ensuring the constant systemic blood flow supplying oxygen and nutrients to the body’s organs and relieving them of waste products. Although this description is instructive, it is in no way a reflection of the complex molecular processes that have gone into its correct development. This chapter sets out to present the reader with the very basics for understanding the one of the earliest phases of embryology. Starting at the moment of fertilization, the proceeding anatomical and key molecular events that lead to the correct positioning and development of the four-chambered mammalian heart are dealt with in a concise and understandable manner. Particular attention is paid to the development of the heart’s electrical system and the subcomponents essential to the correct pacing and rapid conduction of the electrical impulse that will ensure rhythmicity of the contracting atria and ventricles. Further reference reading is offered throughout the chapter for readers with a more detailed interest in the processes presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanhaanen WT, Brons JF, Dominguez JN, Rana MS, Norden J, Airik R et al (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104:1267

    Article  PubMed  CAS  Google Scholar 

  • Aanhaanen WT, Mommersteeg MT, Norden J, Wakker V, de Gier-de VC, Anderson RH et al (2010) Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res 107:728–736

    Article  PubMed  CAS  Google Scholar 

  • Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2-5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268

    Article  PubMed  CAS  Google Scholar 

  • Anderson RH, Wilkinson JL, Becker AE (1978) The bulbus cordis–a misunderstood region of the developing human heart: its significance to the classification of congenital cardiac malformations. Birth Defects Orig Artic Ser 14(7):1–28

    PubMed  CAS  Google Scholar 

  • Bakker ML, Boukens BJ, Mommersteeg MTM, Brons JF, Wakker V, Moorman AFM et al (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349

    Article  PubMed  CAS  Google Scholar 

  • Bamshad M, Lin RC, Law DJ, Watkins WS, Krakowiak PA, Moore ME et al (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16:311–315

    Article  PubMed  CAS  Google Scholar 

  • Bamshad M, Le T, Watkins WS, Dixon ME, Kramer BE, Roeder AD et al (1999) The spectrum of mutations in TBX3: Genotype/phenotype relationship in ulnar-mammary syndrome. Am J Hum Genet 64:1550–1562

    Article  PubMed  CAS  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J et al (1997) Mutations in human TBX5 (corrected) cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  PubMed  CAS  Google Scholar 

  • Basson CT, Huang T, Lin RC, Bachinsky DR, Weremowicz S, Vaglio A et al (1999) Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci USA 96:2919–2924

    Article  PubMed  CAS  Google Scholar 

  • Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  PubMed  CAS  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    PubMed  CAS  Google Scholar 

  • Boogerd KJ, Wong LYE, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AFM et al (2008) Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of connexin 43. Cardiovasc Res 78:485–493

    Article  PubMed  CAS  Google Scholar 

  • Boogerd CJ, Moorman AF, Barnett P (2009) Protein interactions at the heart of cardiac chamber formation. Ann Anat 191:505–517

    Article  PubMed  CAS  Google Scholar 

  • Boogerd CJ, Dooijes D, Ilgun A, Mathijssen IB, Hordijk R, van de Laar I, Rump P et al (2010) Functional analysis of novel TBX5 T-box mutations associated with Holt-Oram syndrome. Cardiovasc Res 88(1):130–9

    Article  PubMed  CAS  Google Scholar 

  • Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J et al (2006) Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42:175–197

    Article  PubMed  CAS  Google Scholar 

  • Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG et al (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 211:100–108

    Article  PubMed  CAS  Google Scholar 

  • Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S et al (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721

    Article  PubMed  CAS  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–837

    Article  PubMed  CAS  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  PubMed  CAS  Google Scholar 

  • Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X et al (2005) T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–2487

    Article  PubMed  CAS  Google Scholar 

  • Canale ED, Campbell GR, Smolich JJ, Campbell JH (1986) Cardiac muscle. Springer, Berlin

    Book  Google Scholar 

  • Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ et al (1996) Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn 206:379–390

    Article  PubMed  CAS  Google Scholar 

  • Chen JR, Chatterjee B, Meyer R, Yu JC, Borke JL, Isales CM et al (2004) Tbx2 represses expression of connexin43 in osteoblastic-like cells. Calcif Tissue Int 74:561–573

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mao J, Sun Y, Zhang Q, Cheng HB, Yan WH et al (2010) A novel mutation of GATA4 in a familial atrial septal defect. Clin Chim Acta 411:1741–1745

    Article  PubMed  CAS  Google Scholar 

  • Christoffels VM, Habets PEMH, Franco D, Campione M, de Jong F, Lamers WH et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278

    Article  PubMed  CAS  Google Scholar 

  • Christoffels VM, Burch JBE, Moorman AFM (2004a) Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med 14:301–307

    Article  PubMed  Google Scholar 

  • Christoffels VM, Hoogaars WMH, Tessari A, Clout DEW, Moorman AFM, Campione M (2004b) T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229:763–770

    Article  PubMed  CAS  Google Scholar 

  • Christoffels VM, Mommersteeg MTM, Trowe MO, Prall OWJ, de Gier-de Vries C, Soufan AT et al (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Chuck ET, Watanabe M (1997) Differential expression of PSA-NCAM and HNK-1 epitopes in the developing cardiac conduction system of the chick. Dev Dyn 209:182–195

    Article  PubMed  CAS  Google Scholar 

  • Coppen SR, Gourdie RG, Severs NJ (2001) Connexin45 is the first connexin to be expressed in the central conduction system of the mouse heart. Exp Clin Cardiol 6:17–23

    PubMed  CAS  Google Scholar 

  • Coppen SR, Kaba RA, Halliday D, Dupont E, Skepper JN, Elneil S et al (2003) Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol Cell Biochem 242:121–127

    Article  PubMed  CAS  Google Scholar 

  • Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130:2263–2273

    Article  PubMed  CAS  Google Scholar 

  • Davis DL, Edwards AV, Juraszek AL, Phelps A, Wessels A, Burch JB (2001) A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech Dev 108:105–119

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz MV, Sánchez-Gómez C, Palomino M (1989) The primitive cardiac regions in the straight tube heart (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–131

    Google Scholar 

  • DeHaan RL (1967) Development of form in the embryonic heart. An experimental approach. Circulation 35:821–833

    Article  PubMed  CAS  Google Scholar 

  • Delorme B, Dahl E, Jarry-Guichard T, Marics I, Briand JP, Willecke K et al (1995) Developmental regulation of connexin40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn 204:358–371

    Article  PubMed  CAS  Google Scholar 

  • Delorme B, Dahl E, Jarry-Guichard T, Briand JP, Willecke K, Gros D et al (1997) Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res 81:423–437

    Article  PubMed  CAS  Google Scholar 

  • Dupays L, Kotecha S, Mohun TJ (2009) Tbx2 misexpression impairs deployment of second heart field derived progenitor cells to the arterial pole of the embryonic heart. Dev Biol 333(1):121–131

    Article  PubMed  CAS  Google Scholar 

  • Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 18:5687–5696

    Article  Google Scholar 

  • Fan C, Liu M, Wang Q (2003) Functional analysis of TBX5 missense mutations associated with Holt-Oram syndrome. J Biol Chem 278:8780–8785

    Article  PubMed  CAS  Google Scholar 

  • Fijnvandraat AC, Lekanne Deprez RH, Christoffels VM, Ruijter JM, Moorman AFM (2003) TBX5 overexpression stimulates differentiation of chamber myocardium in P19C16 embryonic carcinoma cells. J Muscle Res Cell Motil 24:211–218

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3:777–783

    Article  PubMed  CAS  Google Scholar 

  • Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  PubMed  CAS  Google Scholar 

  • Gros D, Theveniau-Ruissy M, Bernard M, Calmels T, Kober F, Sohl G et al (2009) Connexin 30 is expressed in the mouse sino-atrial node, and modulates heart rate. Cardiovasc Res 85(1):45–55

    Article  CAS  Google Scholar 

  • Habets PEMH, Moorman AFM, Clout DEW, van Roon MA, Lingbeek M, Lohuizen M et al (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16:1234–1246

    Article  PubMed  CAS  Google Scholar 

  • Harrelson Z, Kelly RG, Goldin SN, Gibson-Brown JJ, Bollag RJ, Silver LM et al (2004) Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131:5041–5052

    Article  PubMed  CAS  Google Scholar 

  • He ML, Wen L, Campbell CE, Wu JY, Rao Y (1999) Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci USA 96:10212–10217

    Article  PubMed  CAS  Google Scholar 

  • Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R et al (2001) Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280

    Article  PubMed  CAS  Google Scholar 

  • Hoffman J (1995) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol 16:103–113

    Article  PubMed  CAS  Google Scholar 

  • Hoogaars WMH, Tessari A, Moorman AFM, de Boer PAJ, Hagoort J, Soufan AT et al (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    Article  PubMed  CAS  Google Scholar 

  • Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Houweling AC, Somi S, van den Hoff MJ, Moorman AFM, Christoffels VM (2002) Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec 266:93–102

    Article  PubMed  CAS  Google Scholar 

  • Houweling AC, van Borren MM, Moorman AFM, Christoffels VM (2005) Expression and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease. Cardiovasc Res 67:583–593

    Article  PubMed  CAS  Google Scholar 

  • Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18:210–216

    Article  PubMed  CAS  Google Scholar 

  • Kispert A, Herrmann BG (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12:3211–3220

    PubMed  CAS  Google Scholar 

  • Kleber AG, Janse MJ, Fast VG (2001) Normal and abnormal conduction in the heart. In: Page E, Fozzard HA, Solaro RJ (eds) Handbook of physiology. Oxford University Press, Chicago, Illinois, pp 455–530

    Google Scholar 

  • Komuro I, Izumo S (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149

    Article  PubMed  CAS  Google Scholar 

  • Kreuzberg MM, Sohl G, Kim JS, Verselis VK, Willecke K, Bukauskas FF (2005) Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res 96:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Kreuzberg MM, Schrickel JW, Ghanem A, Kim JS, Degen J, Janssen-Bienhold U et al (2006a) Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node1. Proc Natl Acad Sci USA 103:5959–5964

    Article  PubMed  CAS  Google Scholar 

  • Kreuzberg MM, Willecke K, Bukauskas FF (2006b) Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 16:266–272

    Article  PubMed  CAS  Google Scholar 

  • Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS et al (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060

    Article  PubMed  CAS  Google Scholar 

  • Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JBE, Evans T (1994) GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269:23177–23184

    PubMed  CAS  Google Scholar 

  • Lee Y, Shioi T, Kasahara H, Jobe SM, Wiese RJ, Markham BE et al (1998) The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 18:3120–3129

    PubMed  CAS  Google Scholar 

  • Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH et al (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    Article  PubMed  Google Scholar 

  • Linden H, Williams R, King J, Blair E, Kini U (2009) Ulnar mammary syndrome and TBX3: expanding the phenotype. Am J Med Genet A 149A:2809–2812

    Article  PubMed  Google Scholar 

  • Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431

    PubMed  CAS  Google Scholar 

  • Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Gene Dev 9:1654–1666

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Lu MF, Schwartz RJ, Martin JF (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    Article  PubMed  CAS  Google Scholar 

  • Mommersteeg MTM, Hoogaars WMH, Prall OWJ, de Gier-de Vries C, Wiese C, Clout DEW et al (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100:354–362

    Article  PubMed  CAS  Google Scholar 

  • Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes and evolution. Physiol Rev 83:1223–1267

    PubMed  CAS  Google Scholar 

  • Moorman AFM, Lamers WH (1994) Molecular anatomy of the developing heart. Trends Cardiovasc Med 4:257–264

    Article  PubMed  CAS  Google Scholar 

  • Moorman AF, Schumacher CA, de Boer PA, Hagoort J, Bezstarosti K, van den Hoff MJ et al (2000) Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol 223:279–290

    Article  PubMed  CAS  Google Scholar 

  • Moorman AFM, Webb S, Brown NA, Lamers WH, Anderson RH (2003) Development of the heart: 1. Formation of the cardiac chambers and arterial trunks. Heart 89:806–814

    Article  PubMed  Google Scholar 

  • Moorman AFM, Soufan AT, Hagoort J, de Boer PAJ, Christoffels VM (2004) Development of the building plan of the heart. Ann NY Acad Sci 1015:171–181

    Article  PubMed  Google Scholar 

  • Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Mori AD, Bruneau BG (2004) TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 19:211–215

    Article  PubMed  Google Scholar 

  • Moskowitz IPG, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S et al (2004) The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131:4107–4116

    Article  PubMed  CAS  Google Scholar 

  • Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JA, Hill JA et al (2009) Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development 136:2665–2674

    Article  PubMed  CAS  Google Scholar 

  • Niederreither K, Vermot J, Messaddeq N, Schuhbaur B, Chambon P, Dolle P (2001) Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 128:1019–1031

    PubMed  CAS  Google Scholar 

  • Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A et al (2004) A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet 41:e97

    Article  PubMed  CAS  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927

    Article  PubMed  CAS  Google Scholar 

  • Paff GH, Boucek RJ (1962) Simultaneous electrocardiograms and myograms of the isolated atrium, ventricle and conus of the embryonic chick heart. Anat Rec 142:73–80

    Article  PubMed  CAS  Google Scholar 

  • Paff GH, Boucek RJ, Harrell TC (1968) Observations on the development of the electrocardiogram. Anat Rec 160:575–582

    Article  PubMed  CAS  Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  • Patten BM, Kramer TC (1933) The initiation of contraction in the embryonic chicken heart. Am J Anat 53:349–375

    Article  Google Scholar 

  • Paxton C, Zhao H, Chin Y, Langner K, Reecy J (2002) Murine Tbx2 contains domains that activate and repress gene transcription. Gene 283:117–124

    Article  PubMed  CAS  Google Scholar 

  • Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    Article  PubMed  CAS  Google Scholar 

  • Plageman TF Jr, Yutzey KE (2004) Differential expression and function of Tbx5 and Tbx20 in cardiac development. J Biol Chem 279:19026–19034

    Article  PubMed  CAS  Google Scholar 

  • Postma AV, van de Meerakker JBA, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A et al (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A et al (2007) Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol 43:677–685

    Article  PubMed  CAS  Google Scholar 

  • Ramsay G (1998) DNA chips: state-of-the art. Nat Biotechnol 16:40–44

    Article  PubMed  CAS  Google Scholar 

  • Reamon-Buettner SM, Borlak J (2006) HEY2 mutations in malformed hearts. Hum Mutat 27:118

    Article  PubMed  Google Scholar 

  • Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    Article  PubMed  CAS  Google Scholar 

  • Satin J, Fujii S, de Haan RL (1988) Development of cardiac heartbeat in early chick embryos is regulated by regional cues. Dev Biol 129:103–113

    Article  PubMed  CAS  Google Scholar 

  • Schott J-J, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  PubMed  CAS  Google Scholar 

  • Seidl W, Schulze M, Steding G, Kluth D (1981) A few remarks on the physiology of the chick embryo heart (Gallus gallus). Folia Morphol 29:237–242

    CAS  Google Scholar 

  • Sepulveda JL, Belaguli N, Nigam V, Chen CY, Nemer M, Schwartz RJ (1998) GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets. Role for regulating early cardiac gene expression. Mol Cell Biol 18:3405–3415

    PubMed  CAS  Google Scholar 

  • Singh R, Horsthuis T, Farin HF, Grieskamp T, Norden J, Petry M et al (2009) Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal. Circ Res 105:442–452

    Article  PubMed  CAS  Google Scholar 

  • Sissman J (1966) Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature 210:504–507

    Article  PubMed  CAS  Google Scholar 

  • Sizarov A, Ya J, de Boer BA, Lamers WH, Christoffels VM, Moorman AFM (2011) Formation of the building plan of the human heart: morphogenesis, growth and differentiation. Circulation 123(10):1125–35

    Article  PubMed  Google Scholar 

  • Small EM, Krieg PA (2003) Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol 261:116–131

    Article  PubMed  CAS  Google Scholar 

  • Smith J (1999) T-box genes: what they do and how they do it. Trends Genet 15:154–158

    Article  PubMed  CAS  Google Scholar 

  • Soufan AT, van den Berg G, Ruijter JM, de Boer PAJ, van den Hoff MJB, Moorman AFM (2006) Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 99:545–552

    Article  PubMed  CAS  Google Scholar 

  • Stalsberg H (1969) The origin of heart asymmetry: right and left contributions to the early chick embryo heart. Dev Biol 19:109–127

    Article  PubMed  CAS  Google Scholar 

  • Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910

    Article  PubMed  CAS  Google Scholar 

  • Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M et al (2003) The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA 100:15235–15240

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai C et al (2006) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304(1):286–96

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280

    PubMed  CAS  Google Scholar 

  • Thompson RP, Lindroth JR, Alles AJ, Fazel AR (1990) Cell differentiation birthdates in the embryonic rat heart. Ann NY Acad Sci 588:446–448

    Article  Google Scholar 

  • van den Berg G, Moorman AF (2009) Concepts of cardiac development in retrospect. Pediatr Cardiol 30:580–587

    Article  PubMed  Google Scholar 

  • van den Berg G, Abu-Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT et al (2009) A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 104:179–188

    Article  PubMed  CAS  Google Scholar 

  • van Kempen MJA, Vermeulen JLM, Moorman AFM, Gros DB, Paul DL, Lamers WH (1996) Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 32:886–900

    PubMed  Google Scholar 

  • van Mierop LHS (1967) Localization of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212:407–415

    PubMed  Google Scholar 

  • van Mierop LHS, Gessner IH (1970) The morphologic development of the sinoatrial node in the mouse. Am J Cardiol 25:204–212

    Article  PubMed  Google Scholar 

  • van Wijk B, Moorman AFM, van den Hoff MJB (2007) Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res 74:244–255

    Article  PubMed  CAS  Google Scholar 

  • Virágh Sz, Challice CE (1977) The development of the conduction system in the mouse embryo heart. II. Histogenesis of the atrioventricular node and bundle. Dev Biol 56:397–411

    Article  PubMed  Google Scholar 

  • Virágh Sz, Challice CE (1980) The development of the conduction system in the mouse embryo heart. III. The development of sinus muscle and sinoatrial node. Dev Biol 80:28–45

    Article  PubMed  Google Scholar 

  • Virágh Sz, Challice CE (1982) The development of the conduction system in the mouse embryo heart. IV. Differentiation of the atrioventricular conduction system. Dev Biol 89:25–40

    Article  PubMed  Google Scholar 

  • Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wessels A, Markman MWM, Vermeulen JLM, Anderson RH, Moorman AFM, Lamers WH (1996) The development of the atrioventricular junction in the human heart. Circ Res 78:110–117

    Article  PubMed  CAS  Google Scholar 

  • Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de VC et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by tbx18 and tbx3. Circ Res 104:388–397

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA et al (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ (2000) Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev Biol 228:95–105

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S et al (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115:1522–1531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Barnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wong, L.Y.E., Moorman, A.F., Barnett, P. (2012). Basic Cardiac Development: The Heart and Its Electrical Components. In: Sedmera, D., Wang, T. (eds) Ontogeny and Phylogeny of the Vertebrate Heart. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3387-3_8

Download citation

Publish with us

Policies and ethics