Skip to main content

Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis Technology

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

Well-engineered, slow-pyrolysis technology, optimized for the production of bioenergy and biochar from sustainable feedstocks, could deliver significant environmental and economic advantages to industry. Utilization of biochar products as a soil amendment could contribute to ongoing food security and agricultural productivity. Biochar production and sequestration can result in the net removal of greenhouse gases from the atmosphere, making the technology a potentially valuable tool for climate change mitigation. It is essential that the emerging industry is well regulated and that quality assurance and sustainability mechanisms are adopted. This will optimize the net benefit of the technology. Biochar products produced from different industries will vary greatly in characteristics. Equally, the drivers for different industries to adopt slow-pyrolysis technology will vary. Significant advantages provided by the technology across multiple industries may result in extensive adoption. The development of a biochar market is required, with the uncertainty in biochar price and market size, being a major contributor to lack of confidence in the business case for the technology. Markets for biochar as a product are diverse, ranging from broad acre agriculture to niche applications such as roof gardens, where its unique properties give it significant competitive advantages over alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam JC (2009) Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (eco-charcoal). Renew Energy 34:1923–1925

    Article  CAS  Google Scholar 

  2. Asomani-Boateng R (2007) Closing the loop community-based organic solid waste recycling, urban gardening, and land use planning in Ghana, West Africa. J Plan Educ Res 27:132–145. doi:10.1177/0739456X07306392

    Article  Google Scholar 

  3. Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) Review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60:279–300

    Article  CAS  Google Scholar 

  4. Bellamy KL, Chong C, Cline RA (1995) Paper sludge utilization in agriculture and container nursery culture. J Environ Qual 24:1074–1082

    Article  CAS  Google Scholar 

  5. Beyer L, Frund R, Mueller K (1997) Short-term effects of a secondary paper mill sludge application on soil properties in a Psammentic Haplumbrept under cultivation. Sci Total Environ 197:127–137

    Article  CAS  Google Scholar 

  6. Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z (2010) Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Aust J Soil Res 48:531–545

    Article  Google Scholar 

  7. Boni MR, D’Aprile L, De Casa G (2004) Environmental quality of primary paper sludge. J Hazard Mater 108:125–128

    Article  CAS  Google Scholar 

  8. Bridgwater AV (2007) IEA Bioenergy Update 27: biomass pyrolysis. Biomass Bioenergy 31:1–5

    Article  Google Scholar 

  9. Brown R (2009) Biochar Production Technology. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 127–139

    Google Scholar 

  10. Bryant D, Downie A (2007) Agrichar: building a commercial venture. International Agrichar Initiative, Terrigal, New South Wales, Australia, p. 18

    Google Scholar 

  11. Busscher W, Novak J, Evans D, Watts D, Niandou M, Ahmedna M (2010) Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci 175:10

    Article  CAS  Google Scholar 

  12. Cartmell E, Gostelow P, Riddell-Black D, Simms N, Oakey J, Morris J, Jeffrey P, Howsam P, Pollard SJ (2005) Biosolids a fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis. Environ Sci Technol 40:649–658. doi:10.1021/es052181g

    Article  Google Scholar 

  13. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  14. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recy 53:434–447

    Article  Google Scholar 

  15. Di Blasi C (2008) Modelling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust 34:47–90

    Article  Google Scholar 

  16. Downie A, Klatt P, Downie R, Munroe P (2007) Slow pyrolysis: Australian demonstration plant successful on multi-feedstocks. Bioenergy 2007 Conference, Jyväskylä, Finland

    Google Scholar 

  17. Downie A, Munroe P, Cowie A, Van Zwieten L, Lau DM (2012) Biochar as a geo-engineering climate solution: hazard identification and risk management. Crit Rev Env Sci Tec 42(3):225–250. doi:10.1080/10643389.2010.5079800

    Article  Google Scholar 

  18. Downie A, Munroe P, Crosky A (2009) Characteristics of biochar—physical and structural properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–29

    Google Scholar 

  19. Elmer W, White JC, Pignatello JJ (2010) Impact of biochar addition to soil on the bioavailability of chemicals important in agriculture. Report. New Haven: University of Connecticut

    Google Scholar 

  20. Ernst & Young (2010) Navigating the valley of death Exploring mechanisms to finance emerging clean technologies in Australia. Report. Clean Energy Council, Southbank VIC, Australia

    Google Scholar 

  21. FAO (1983) Simple Technologies for Charcoal Making, FAO Forestry Paper 41. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  22. Gaunt J, Cowie A (2009) Biochar, Greenhouse Gas Accounting and Emissions Trading. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  23. Glover M (2009) Taking biochar to market: some essential concepts for commercial success. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 375–392

    Google Scholar 

  24. Gullett BK, Bruce KR, Beach LO, Drago AM (1992) Mechanistic steps in the production of PCDD and PCDF during waste combustion. Chemosphere 25:1387–1392

    Article  CAS  Google Scholar 

  25. Hua L, Wu WX, Liu YX, McBride M, Chen YX (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo char-coal amendment. Environ Sci Pollut Res Int 16:1–9

    Article  CAS  Google Scholar 

  26. IEA (2010) Sustainable Production of Second-Generation Biofuels - Potential and perspectives in major economies and developing countries. International Energy Agency, France

    Google Scholar 

  27. Kulkarni PS, Crespo JG, Afonso CAM (2008) Dioxins sources and current remediation technologies—a review. Environ Int 34:139–153

    Article  CAS  Google Scholar 

  28. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Bioref 3:547–562

    Article  CAS  Google Scholar 

  29. Lavric ED, Konnov AA, De Ruyck J (2005) Surrogate compounds for dioxins in incineration. A review. Waste Manag 25:755–765

    Article  CAS  Google Scholar 

  30. Lehmann J, da Silva JPJ, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  31. Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  32. Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC, Boca Raton

    Google Scholar 

  33. Major J, Steiner C, Downie A, Lehmann J (2009) Biochar effects on nutrient leaching. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 271–282

    Google Scholar 

  34. Mastral A, Callean M (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34:3051

    Article  CAS  Google Scholar 

  35. Mathews JA (2007) Carbon-negative biofuels. Energy Policy 36:940–945

    Article  Google Scholar 

  36. McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Eng J 86:343–368

    Article  CAS  Google Scholar 

  37. Namaalwa J, Sankhayan PL, Hofstad O (2007) A dynamic bio-economic model for analyzing deforestation and degradation: an application to woodlands in Uganda. Forest Policy Econ 9:479–495

    Article  Google Scholar 

  38. Nerome M, Toyota K, Islam TMD, Nishijima T, Matsuoka T, Sato K, Yamaguchi Y (2005) Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorg 59:9–14

    Google Scholar 

  39. Pacific Pyrolysis Pty Ltd (2010) Pacific Pyrolysis slow pyrolysis technology

    Google Scholar 

  40. Phillips VR, Kirkpatrick N, Scotford IM, White RP, Burton RGO (1997) The use of paper-mill sludges on agricultural land. Bioresour Technol 60:73–80

    Article  CAS  Google Scholar 

  41. Pietikainen J, Kiikkila O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  CAS  Google Scholar 

  42. Poulsen TG, Hansen JA (2003) Strategic environmental assessment of alternative sewage sludge management scenarios. Waste Manag Res 21:19. doi:10.1177/0734242X0302100103

    Article  Google Scholar 

  43. Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Progress in Energy and Combustion Science 26:565–608

    Article  CAS  Google Scholar 

  44. Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  45. Sims JT, Maguire RO, Daniel H (2005) Manure Management. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 402–410

    Google Scholar 

  46. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525. doi:doi:10.1071/SR10058

    Article  CAS  Google Scholar 

  47. Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 1–12. doi:10.2134/jeq2009.0138

  48. Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899. doi:10.1002/jpln.200625199

    Article  CAS  Google Scholar 

  49. Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 85–105

    Google Scholar 

  50. UN (2009) World population prospects: the 2008 revision. Population Newsletter No. 87. United Nations

    Google Scholar 

  51. Van Zwieten L, Kimber S, Downie A, Morris S, Petty S, Rust J, Chan KY (2010) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Aust J Soil Res 48:569–576. doi:doi:10.1071/SR10003

    Article  Google Scholar 

  52. Van Zwieten L, Kimber S, Downie A, Orr L, Walker T, Sinclair K, Morris S, Joseph S, Petty S, Rust J, Chan KY (2010) Agro-economic valuation of biochar using field-derived data, International Biochar Conference, Rio de Janeiro, Brazil

    Google Scholar 

  53. Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. doi:10.1007/s11104-009-0050-x

    Article  Google Scholar 

  54. Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010) Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust J Soil Res 48:555–568. doi:doi:10.1071/SR10004

    Article  Google Scholar 

  55. Wood S, Cowie AL (2004) A review of greenhouse gas emissions factors for fertiliser production. IEA Bioenergy Task 38. www.ieabioenergy-task38.org/publications/GHG_Emissions_Fertlizer%20Production_July2004.pdf

  56. Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671

    Article  CAS  Google Scholar 

  57. Ogawa M, Okimori Y (2010) Pioneering works in biochar research, Japan. Aust J Soil Res 48:489–500. Doi:10.1071/SR10006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Downie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Downie, A., Van Zwieten, L. (2013). Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis Technology. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_8

Download citation

Publish with us

Policies and ethics