Skip to main content

Antioxidants in Sperm Cryopreservation

  • Chapter
  • First Online:
Male Infertility

Abstract

Cryopreservation and thawing exposes spermatozoa to various stresses that could lead eventually to loss of fertilizing potential. Despite various advances in cryopreservation methodology, the recovery rate of functional post-thaw spermatozoa remains to be improved. The use of cryoprotectants such as glycerol, ethylene glycol, dimethyl sulfoxide (DMSO), and 1,2-propanediol (PROH) marked one of the most significant advancements in cryopreservation. Cryoprotectants are low molecular weight, highly permeable chemicals that serve to protect spermatozoa from freeze damage induced by ice crystallization. Cryoprotectants act by decreasing the freezing point of a substance, reducing the amount of salts and solutes present in the liquid phase of the sample, and decreasing ice formation within the spermatozoa. Oxidative stress (OS), resulting from an imbalance between reactive oxygen species (ROS) and antioxidants, is detrimental to human spermatozoa resulting in significant loss of function. Increased ROS production and decreased antioxidant levels is known to occur during sperm cryopreservation and thawing. Therefore, OS does play a role in injury sustained by spermatozoa during cryopreservation. Subsequently antioxidants which counteract the effects of ROS could be of use in preventing OS-induced cryoinjury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunge RG, Sherman JK. Fertilizing capacity of frozen human spermatozoa. Nature. 1953;172:767–8.

    Article  PubMed  CAS  Google Scholar 

  2. Anger JT, Gilbert BR, Goldstein M. Cryopreservation of sperm: indications, methods and results. J Urol. 2003;170:1079–84.

    Article  PubMed  Google Scholar 

  3. Nawroth F, Rahimi G, Isachenko E, et al. Cryopreservation in assisted reproductive technology: new trends. Semin Reprod Med. 2005;23:325–35.

    Article  PubMed  Google Scholar 

  4. Donnelly ET, Steele EK, McClure N, Lewis SE. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod. 2001;16:1191–9.

    Article  PubMed  CAS  Google Scholar 

  5. Royere D, Barthelemy C, Hamamah S, Lansac J. Cryopreservation of spermatozoa: a 1996 review. Hum Reprod Update. 1996;2:553–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bilodeau JF, Chatterjee S, Sirard MA, Gagnon C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol Reprod Dev. 2000;55:282–8.

    Article  PubMed  CAS  Google Scholar 

  7. Chatterjee S, Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev. 2001;59:451–8.

    Article  PubMed  CAS  Google Scholar 

  8. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    Article  PubMed  CAS  Google Scholar 

  9. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73:459–64.

    Article  PubMed  CAS  Google Scholar 

  10. Aitken RJ, Baker MA, Sawyer D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online. 2003;7:65–70.

    Article  PubMed  CAS  Google Scholar 

  11. Wang X, Sharma RK, Gupta A, et al. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80 Suppl 2:844–50.

    Article  PubMed  Google Scholar 

  12. Wang X, Sharma RK, Sikka SC, Thomas Jr AJ, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.

    Article  PubMed  Google Scholar 

  13. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.

    Article  PubMed  CAS  Google Scholar 

  14. Aitken RJ, Gordon E, Harkiss D, et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46.

    Article  PubMed  CAS  Google Scholar 

  15. Ollero M, Gil-Guzman E, Lopez MC, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16:1912–21.

    Article  PubMed  CAS  Google Scholar 

  16. Moustafa MH, Sharma RK, Thornton J, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19:129–38.

    Article  PubMed  CAS  Google Scholar 

  17. Alvarez J, Touchstone J, Blasco L, Storey B. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8:338–48.

    PubMed  CAS  Google Scholar 

  18. Aitken RJ, Fisher HM, Fulton N, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47:468–82.

    Article  PubMed  CAS  Google Scholar 

  19. Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86:503–12.

    Article  PubMed  CAS  Google Scholar 

  20. Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16:464–8.

    PubMed  CAS  Google Scholar 

  21. Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004;25:5–18.

    PubMed  CAS  Google Scholar 

  22. Sharma RK, Pasqualotto FF, Nelson DR, Thomas Jr AJ, Agarwal A. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14:2801–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi H, Gil-Guzman E, Mahran AM, et al. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl. 2001;22:568–74.

    PubMed  CAS  Google Scholar 

  24. Said TM, Kattal N, Sharma RK, et al. Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl. 2003;24:676–80.

    PubMed  CAS  Google Scholar 

  25. Smith R, Vantman D, Ponce J, Escobar J, Lissi E. Total antioxidant capacity of human seminal plasma. Hum Reprod. 1996;11:1655–60.

    Article  PubMed  CAS  Google Scholar 

  26. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.

    PubMed  CAS  Google Scholar 

  27. Donnelly ET, McClure N, Lewis SE. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14:505–12.

    Article  PubMed  CAS  Google Scholar 

  28. Donnelly ET, McClure N, Lewis SE. Glutathione and hypotaurine in vitro: effects on human sperm motility, DNA integrity and production of reactive oxygen species. Mutagenesis. 2000;15:61–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gavella M, Lipovac V, Marotti T. Effect of pentoxifylline on superoxide anion production by human sperm. Int J Androl. 1991;14:320–7.

    Article  PubMed  CAS  Google Scholar 

  30. Gavella M, Lipovac V. Pentoxifylline-mediated reduction of superoxide anion production by human spermatozoa. Andrologia. 1992;24:37–9.

    Article  PubMed  CAS  Google Scholar 

  31. McKinney KA, Lewis SE, Thompson W. The effects of pentoxifylline on the generation of reactive oxygen species and lipid peroxidation in human spermatozoa. Andrologia. 1996;28:15–20.

    Article  PubMed  CAS  Google Scholar 

  32. Okada H, Tatsumi N, Kanzaki M, Fujisawa M, Arakawa S, Kamidono S. Formation of reactive oxygen species by spermatozoa from asthenospermic patients: response to treatment with pentoxifylline. J Urol. 1997;157:2140–6.

    Article  PubMed  CAS  Google Scholar 

  33. Oeda T, Henkel R, Ohmori H, Schill WB. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: a possible therapeutic modality for male factor infertility? Andrologia. 1997;29:125–31.

    Article  PubMed  CAS  Google Scholar 

  34. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 1979;31:531–7.

    PubMed  CAS  Google Scholar 

  35. Verma A, Kanwar KC. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: an in vitro analysis. Andrologia. 1998;30:325–9.

    Article  PubMed  CAS  Google Scholar 

  36. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.

    PubMed  CAS  Google Scholar 

  37. Donnelly ET, McClure N, Lewis SE. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil Steril. 1999;72:484–95.

    Article  PubMed  CAS  Google Scholar 

  38. Parinaud J, Le Lannou D, Vieitez G, Griveau JF, Milhet P, Richoilley G. Enhancement of motility by treating spermatozoa with an antioxidant solution (Sperm-Fit) following ejaculation. Hum Reprod. 1997;12:2434–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hong CY, Lee MF, Lai LJ, Wang CP. Effect of lipid peroxidation on beating frequency of human sperm tail. Andrologia. 1994;26:61–5.

    Article  PubMed  CAS  Google Scholar 

  40. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13:1429–36.

    Article  PubMed  CAS  Google Scholar 

  41. Armstrong JS, Rajasekaran M, Hellstrom WJ, Sikka SC. Antioxidant potential of human serum albumin: role in the recovery of high quality human spermatozoa for assisted reproductive technology. J Androl. 1998;19:412–9.

    PubMed  CAS  Google Scholar 

  42. Lewin A, Lavon H. The effect of coenzyme Q10 on sperm motility and function. Mol Aspects Med. 1997;18(Suppl):S213–9.

    Article  PubMed  CAS  Google Scholar 

  43. Baker HW, Brindle J, Irvine DS, Aitken RJ. Protective effect of antioxidants on the impairment of sperm motility by activated polymorphonuclear leukocytes. Fertil Steril. 1996;65:411–9.

    PubMed  CAS  Google Scholar 

  44. Kobayashi T, Miyazaki T, Natori M, Nozawa S. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod. 1991;6:987–91.

    PubMed  CAS  Google Scholar 

  45. Gagnon C, Iwasaki A, De Lamirande E, Kovalski N. Reactive oxygen species and human spermatozoa. Ann N Y Acad Sci. 1991;637:436–44.

    Article  PubMed  CAS  Google Scholar 

  46. Kovalski NN, de Lamirande E, Gagnon C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertil Steril. 1992;58:809–16.

    PubMed  CAS  Google Scholar 

  47. Griveau JF, Le Lannou D. Effects of antioxidants on human sperm preparation techniques. Int J Androl. 1994;17:225–31.

    Article  PubMed  CAS  Google Scholar 

  48. Zalata A, Hafez T, Comhaire F. Evaluation of the role of reactive oxygen species in male infertility. Hum Reprod. 1995;10:1444–51.

    PubMed  CAS  Google Scholar 

  49. Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900.

    Article  PubMed  CAS  Google Scholar 

  50. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. The effects of antioxidant supplementation during Percoll preparation on human sperm DNA integrity. Hum Reprod. 1998;13:1240–7.

    Article  PubMed  CAS  Google Scholar 

  51. Mazzilli F, Rossi T, Sabatini L, et al. Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil. 1995;26:145–8.

    PubMed  CAS  Google Scholar 

  52. Kadirvel G, Kumar S, Kumaresan A. Lipid peroxidation, mitochondrial membrane potential and DNA integrity of spermatozoa in relation to intracellular reactive oxygen species in liquid and frozen-thawed buffalo semen. Anim Reprod Sci. 2009;114:125–34.

    Article  PubMed  CAS  Google Scholar 

  53. Alvarez JG, Storey BT. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl. 1992;13:232–41.

    PubMed  CAS  Google Scholar 

  54. Bell M, Wang R, Hellstrom WJ, Sikka SC. Effect of cryoprotective additives and cryopreservation protocol on sperm membrane lipid peroxidation and recovery of motile human sperm. J Androl. 1993;14:472–8.

    PubMed  CAS  Google Scholar 

  55. Lasso JL, Noiles EE, Alvarez JG, Storey BT. Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J Androl. 1994;15:255–65.

    PubMed  CAS  Google Scholar 

  56. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.

    Article  PubMed  CAS  Google Scholar 

  57. Wang AW, Zhang H, Ikemoto I, Anderson DJ, Loughlin KR. Reactive oxygen species generation by seminal cells during cryopreservation. Urology. 1997;49:921–5.

    Article  PubMed  CAS  Google Scholar 

  58. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril. 2001;76:892–900.

    Article  PubMed  CAS  Google Scholar 

  59. Duru NK, Morshedi MS, Schuffner A, Oehninger S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl. 2001;22:646–51.

    PubMed  CAS  Google Scholar 

  60. Isachenko V, Isachenko E, Katkov II, et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71:1167–73.

    Article  PubMed  CAS  Google Scholar 

  61. Zribi N, Chakroun NF, El Euch H, Gargouri J, Bahloul A, Keskes LA. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;93:159–66.

    Article  PubMed  CAS  Google Scholar 

  62. Dalzell LH, McVicar CM, McClure N, Lutton D, Lewis SE. Effects of short and long incubations on DNA fragmentation of testicular sperm. Fertil Steril. 2004;82:1443–5.

    Article  PubMed  Google Scholar 

  63. Saritha KR, Bongso A. Comparative evaluation of fresh and washed human sperm cryopreserved in vapor and liquid phases of liquid nitrogen. J Androl. 2001;22:857–62.

    PubMed  CAS  Google Scholar 

  64. Grizard G, Chevalier V, Griveau JF, Le Lannou D, Boucher D. Influence of seminal plasma on cryopreservation of human spermatozoa in a biological material-free medium: study of normal and low-quality semen. Int J Androl. 1999;22:190–6.

    Article  PubMed  CAS  Google Scholar 

  65. Wolf DP, Patton PE, Burry KA, Kaplan PF. Intrauterine insemination-ready versus conventional semen cryopreservation for donor insemination: a comparison of retrospective results and a prospective, randomized trial. Fertil Steril. 2001;76:181–5.

    Article  PubMed  CAS  Google Scholar 

  66. Askari HA, Check JH, Peymer N, Bollendorf A. Effect of natural antioxidants tocopherol and ascorbic acids in maintenance of sperm activity during freeze-thaw process. Arch Androl. 1994;33:11–5.

    Article  PubMed  CAS  Google Scholar 

  67. Taylor K, Roberts P, Sanders K, Burton P. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online. 2009;18:184–9.

    Article  PubMed  Google Scholar 

  68. Verma A, Kanwar KC. Effect of vitamin E on human sperm motility and lipid peroxidation in vitro. Asian J Androl. 1999;1:151–4.

    PubMed  CAS  Google Scholar 

  69. Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl. 2007;28:229–40.

    Article  PubMed  CAS  Google Scholar 

  70. Li ZL, Lin QL, Liu RJ, Xie WY, Xiao WF. Reducing oxidative DNA damage by adding antioxidants in human semen samples undergoing cryopreservation procedure. Zhonghua Yi Xue Za Zhi. 2007;87:3174–7.

    PubMed  CAS  Google Scholar 

  71. Gadea J, Gumbao D, Canovas S, Garcia-Vazquez FA, Grullon LA, Gardon JC. Supplementation of the dilution medium after thawing with reduced glutathione improves function and the in vitro fertilizing ability of frozen-thawed bull spermatozoa. Int J Androl. 2008;31:40–9.

    PubMed  CAS  Google Scholar 

  72. Park NC, Park HJ, Lee KM, Shin DG. Free radical scavenger effect of rebamipide in sperm processing and cryopreservation. Asian J Androl. 2003;5:195–201.

    PubMed  CAS  Google Scholar 

  73. Rossi T, Mazzilli F, Delfino M, Dondero F. Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure. Cell Tissue Bank. 2001;2:9–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Said MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Said, T., Agarwal, A. (2012). Antioxidants in Sperm Cryopreservation. In: Parekattil, S., Agarwal, A. (eds) Male Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3335-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3335-4_41

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3334-7

  • Online ISBN: 978-1-4614-3335-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics