Skip to main content

Endoplasmic Reticulum Stress in Vertebrate Mutant Rhodopsin Models of Retinal Degeneration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Rhodopsin mutations cause many types of heritable retinitis pigmentosa (RP). Biochemical and in vitro studies have demonstrated that many RP-linked mutant rhodopsins produce misfolded rhodopsin proteins, which are prone to aggregation and retention within the endoplasmic reticulum, where they cause endoplasmic reticulum stress and activate the Unfolded Protein Response signaling pathways. Many vertebrate models of retinal degeneration have been created through expression of RP-linked rhodopsins in photoreceptors including, but not limited to, VPP/GHL mice, P23H Rhodopsin frogs, P23H rhodopsin rats, S334ter rhodopsin rats, C185R rhodopsin mice, T17M rhodopsin mice, and P23H rhodopsin mice. These models have provided many opportunities to test therapeutic strategies to prevent retinal degeneration and also enabled in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death. Here, we examine and compare the contribution of endoplasmic reticulum stress to retinal degeneration in several vertebrate models of RP generated through expression of mutant rhodopsins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

RP:

Retinitis pigmentosa

ER:

Endoplasmic reticulum

UPR:

Unfolded Protein Response

VPP :

V20G, P23H, and P27L mutations

GHL :

V20G, P23H, and P27L mutations

References

  1. Sung CH, Chuang JZ (2010) The cell biology of vision. J Cell Biol 190(6):953–963

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Sung CH, Schneider BG, Agarwal N, Papermaster DS, Nathans J (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88(19):8840–8844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. BioChemistry 33(20):6121–6128

    Article  PubMed  CAS  Google Scholar 

  4. Illing ME, Rajan RS, Bence NF, Kopito RR (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277(37):34150–34160

    Article  PubMed  CAS  Google Scholar 

  5. Saliba RS, Munro PM, Luthert PJ, Cheetham ME (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115(Pt 14):2907–2918

    PubMed  CAS  Google Scholar 

  6. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, LaVail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318(5852):944–949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Chiang WC, Messah C, Lin JH (2012) IRE1 directs proteasomal and lysosomal degradation of misfolded rhodopsin. Mol Biol Cell 23(5):758–770

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Naash MI, Hollyfield JG, al-Ubaidi MR, Baehr W (1993) Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc Natl Acad Sci USA 90(12):5499–5503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Frederick JM, Krasnoperova NV, Hoffmann K, Church-Kopish J, Ruther K, Howes K, Lem J, Baehr W (2001) Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 42(3):826–833

    PubMed  CAS  Google Scholar 

  10. Wu TH, Ting TD, Okajima TI, Pepperberg DR, Ho YK, Ripps H, Naash MI (1998) Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa. Neuroscience 87(3):709–717

    Article  PubMed  CAS  Google Scholar 

  11. Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(8):3234–3241

    Article  PubMed  Google Scholar 

  12. Lee D, Geller S, Walsh N, Valter K, Yasumura D, Matthes M, LaVail M, Stone J (2003) Photoreceptor degeneration in Pro23His and S334ter transgenic rats. Adv Exp Med Biol 533:297–302

    Article  PubMed  CAS  Google Scholar 

  13. Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, Bush RA, Sieving PA (2000) P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci 41(10):3200–3209

    PubMed  CAS  Google Scholar 

  14. Steinberg RH, Flannery JG, Naash MI, Oh P, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, LaVail MM (1996) Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes [ARVO Abstract]. Invest Ophthalmol Vis Sci 37:S 698 (Abstract nr 3190)

    Google Scholar 

  15. Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW, Lin JH, Muzyczka N, Lewin AS (2010) Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci USA 107(13):5961–5966

    Article  PubMed Central  PubMed  Google Scholar 

  16. Vasireddy V, Chavali VR, Joseph VT, Kadam R, Lin JH, Jamison JA, Kompella UB, Reddy GB, Ayyagari R (2011) Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. PLoS One 6(6):e21193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Chiang WC, Hiramatsu N, Messah C, Kroeger H, Lin JH (2012) Selective activation of ATF6 and PERK endoplasmic reticulum stress signaling pathways prevent mutant rhodopsin accumulation. Invest Ophthalmol Vis Sci 53(11):7159–7166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Pennesi ME, Nishikawa S, Matthes MT, Yasumura D, LaVail MM (2008) The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats. Exp Eye Res 87(6):561–570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Concepcion F, Mendez A, Chen J (2002) The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors. Vision Res 42(4):417–426

    Article  PubMed  CAS  Google Scholar 

  20. Green ES, Menz MD, LaVail MM, Flannery JG (2000) Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(6):1546–1553

    PubMed  CAS  Google Scholar 

  21. Lee ES, Flannery JG (2007) Transport of truncated rhodopsin and its effects on rod function and degeneration. Invest Ophthalmol Vis Sci 48(6):2868–2876

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chen J, Makino CL, Peachey NS, Baylor D, Simon MI (1995) Mechanisms of rhodopsin inactivation in vivo as revealed by COOH-terminal truncation mutant. Science 267:374–377

    Article  PubMed  CAS  Google Scholar 

  23. Sung C-H, Davenport CM, Nathans J (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. J Biol Chem 268:26645–26649

    PubMed  CAS  Google Scholar 

  24. Kroeger H, Messah C, Ahern K, Gee J, Joseph V, Matthes MT, Yasumura D, Gorbatyuk MS, Chiang WC, Lavail MM, Lin JH (2012) Induction of Endoplasmic Reticulum Stress Genes, BiP and Chop, in Genetic and Environmental Models of Retinal Degeneration. Invest Ophthalmol Vis Sci 53(12):7590–7599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Shinde VM, Sizova OS, Lin JH, Lavail MM, Gorbatyuk MS (2012) ER Stress in Retinal Degeneration in S334ter Rho Rats. PLoS One 7(3):e33266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Liu H, Wang M, Xia CH, Du X, Flannery JG, Ridge KD, Beutler B, Gong X (2010) Severe retinal degeneration caused by a novel rhodopsin mutation. Invest Ophthalmol Vis Sci 51(2):1059–1065

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, Birch DG, Mintz-Hittner H, Ruiz RS, Lewis RA, Saperstein DA, Sullivan LS (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17(1):42–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Li T, Sandberg MA, Pawlyk BS, Rosner B, Hayes KC, Dryja TP, Berson EL (1998) Effect of vitamin A supplementation on rhodopsin mutants threonine-17 -> methionine and proline-347 -> serine in transgenic mice and in cell cultures. Proc Natl Acad Sci USA 95(20):11933–11938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Kunte MM, Choudhury S, Manheim JF, Shinde VM, Miura M, Chiodo VA, Hauswirth WW, Gorbatyuk OS, Gorbatyuk MS (2012) ER stress is involved in T17M rhodopsin-induced retinal degeneration. Invest Ophthalmol Vis Sci 53(7):3792–3800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Iwawaki T, Akai R, Kohno K, Miura M (2004) A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med 10(1):98–102

    Article  PubMed  CAS  Google Scholar 

  31. Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K (2011) Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 286(12):10551–10567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Price BA, Sandoval IM, Chan F, Simons DL, Wu SM, Wensel TG, Wilson JH (2011) Mislocalization and degradation of human P23H-rhodopsin-GFP in a knockin mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(13):9728–9736

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Alberts B (2008) Molecular biology of the cell, 5th ed. Garland Science, New York

    Google Scholar 

  34. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by NIH grant EY001919, EY002162, EY006842, EY020846, and the Foundation Fighting Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kroeger, H., LaVail, M., Lin, J. (2014). Endoplasmic Reticulum Stress in Vertebrate Mutant Rhodopsin Models of Retinal Degeneration. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_74

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics