Skip to main content

Cratering on Icy Bodies

  • Chapter
  • First Online:
The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

Abstract

This chapter covers impacts on ices. Possible outcomes of impacts include both cratering and catastrophic disruption (i.e., where the target body breaks apart in the impact). Both of these are described in laboratory experiments and discussed in a Solar System context. Other physical phenomena that occur during impact (light flash and ionization) are briefly described. As well as this, a general description of cratering is given, along with examples of the impact speeds typical of those for icy bodies in space. Also included is a discussion of how laboratory experiments and modelling are carried out (what type of facilities are used and what they can achieve). This is followed by discussion of real impacts on icy bodies such as satellites of outer planets and comet nuclei. Physical problems that complicate the outcomes of impact events such as the porosity of target bodies (e.g. impacts on comets) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A’Hearn M et al (2005) Deep impact: excavating comet tempel 1. Science 310:258

    Article  ADS  Google Scholar 

  • Arakawa M (1999) Collisional disruption of ice by high-velocity impact. Icarus 142:34

    Article  ADS  Google Scholar 

  • Arakawa M, Tomizuka D (2004) Ice-silicate fractionation among icy bodies due to the difference of impact strength between ice and ice-silicate mixture. Icarus 170:193

    Article  ADS  Google Scholar 

  • Arakawa M et al (2000) Impact cratering of granular mixture targets of H2O ice-CO2 ice-pyrophylite. Planet Sp Sci 48:1437

    Article  ADS  Google Scholar 

  • Arakawa M, Leliwa-Kopystynski J, Maeno N (2002) Impact experiments on porous icy-silicate cylindrical blocks and the implication for disruption and accumulation of small icy bodies. Icarus 158:516

    Article  ADS  Google Scholar 

  • Artemieva N, Lunine J (2003) Cratering on Titan: impact melt, ejecta, and the fate of surface organics. Icarus 164:471

    Article  ADS  Google Scholar 

  • Artemieva N, Lunine J (2005) Impact cratering on Titan II. Global melt, escaping ejecta, and aqueous alteration of surface organics. Icarus 175:522

    Article  ADS  Google Scholar 

  • Atkins WW (1955) Flash associated with high velocity impact on aluminium. J Appl Phys 26:L126

    Article  ADS  Google Scholar 

  • Basilevsky AT, Keller HU (2006) Comet nuclei: morphology and implied processes of surface modification. Planet Sp Sci 54:808

    Article  ADS  Google Scholar 

  • Benz W, Asphaug E (1999) Catastrophic disruption revisited. Icarus 142:5

    Article  ADS  Google Scholar 

  • Best S, Rose MF (1999) A plasma drag hypervelocity particle accelerator (HYPER). Int J Impact Eng 23:67

    Article  Google Scholar 

  • Bland PA et al (1996) The flux of meteorites to the Earth over the last 50,000 years. Mon Not R Astron Soc 283:551

    ADS  Google Scholar 

  • Bottke WF Jr, Nolan MC, Greenberg R, Loolword RA (1994) Velocity distributions among colliding asteroids. Icarus 107:255

    Article  ADS  Google Scholar 

  • Bray VJ et al (2008) The effect of target properties on crater morphology: comparison of central peak craters on the moon and Ganymede. Meteorit Planet Sci 43:1979

    Article  ADS  Google Scholar 

  • Brownlee DE et al (2004) Surface of young Jupiter family comet 81P/Wild 2: view from the Stardust Spacecraft. Science 304:1764

    Article  ADS  Google Scholar 

  • Bruesch LS, Asphaug E (2004) Modeling global impact effects on middle-sized icy bodies: applications to Saturn’s moons. Icarus 168:457

    Article  ADS  Google Scholar 

  • Burchell MJ, Johnson E (2005) Impact craters on small icy bodies such as icy satellites and comet nuclei. Mon Not R Astron Soc 360:769

    Article  ADS  Google Scholar 

  • Burchell MJ, Kearsley AT (2009) Short period Jupiter family comets after Stardust. Planet Sp Sci 57:1146

    Article  ADS  Google Scholar 

  • Burchell MJ, Cole MJ, Ratcliff PR (1996) Light flash and ionization from hypervelocity impacts on ice. Icarus 122:359

    Article  ADS  Google Scholar 

  • Burchell MJ et al (1998) Hypervelocity impact experiments on solid CO2 targets. Icarus 131:210

    Article  ADS  Google Scholar 

  • Burchell MJ et al (1999) Hypervelocity impact studies using the 2 MV Van de Graaff dust accelerator and two stage light gas gun of the university of Kent at Canterbury. Meas Sci Technol 10:41

    Article  ADS  Google Scholar 

  • Burchell MJ, Johnson E, Grey IDS (2002) Hypervelocity impacts on porous ices. In: Proceedings of asteroids, comets and meteors – ACM 2002, ESA-SP500, Berlin, p 859

    Google Scholar 

  • Burchell MJ et al (2003) Survivability of bacteria ejected from icy surfaces after hypervelocity impact. Org Life Evol Biosp 33:53

    Article  ADS  Google Scholar 

  • Burchell MJ, Leliwa-Kopystynski J, Arakawa M (2005) Cratering of icy targets by different impactors: laboratory experiments and implications for cratering in the Solar system. Icarus 179:274

    Article  ADS  Google Scholar 

  • Cintala MJ et al (1985a) Impact experiments in H2O ice II: collisional disruption. In: Lunar and planetary science conference XVI (Houston), p 129

    Google Scholar 

  • Cintala MJ et al (1985b) Impact experiments in H2O ice. In: Lunar and planetary science conference XVI (Houston), p 131

    Google Scholar 

  • Croft SK (1981) Hypervelocity impact craters in icy media. In: Lunar and planetary science conference XII (Houston), p 190

    Google Scholar 

  • Crozier WD, Hume W (1957) High-velocity, light-gas gun. J Appl Phys 28:892

    Article  ADS  Google Scholar 

  • Dawe W, Murray M, Burchell MJ (2005) Catastrophic disruption of porous and solid ice bodies. In: Lunar and planetary science conference XXXVI (Houston), #1096

    Google Scholar 

  • Dell’Oro A et al (2001) Updated collision probabilities of minor body populations. Astron Astrophys 366:1053

    Article  ADS  Google Scholar 

  • Durda DD et al (2007) Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: comparison with observed asteroid families. Icarus 186:498

    Article  ADS  Google Scholar 

  • Dypvik H, Jansa LF (2003) Sedimentary signatures and processes during marine bolide impacts: a review. Sediment Geol 161:309

    Article  ADS  Google Scholar 

  • Eichhorn K, Grun E (1993) High velocity impacts of dust particles in low temperature ice. Planet Sp Sci 41:429

    Article  ADS  Google Scholar 

  • Elachi C et al (2006) Titan Radar Mapper observations from Cassini’s T3 fly-by. Science 441:709

    Google Scholar 

  • Feistel R, Wagner W (2006) A new equation of state for H2O ice Ih. J Phys Chem Ref Data 35:1021

    Article  ADS  Google Scholar 

  • Frank MR, Fei YW, Hu JZ (2004) Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of ice VII. Geochim Cosmochim Acta 68:2781

    Article  ADS  Google Scholar 

  • Friichtenicht JF (1962) Two million volt electrostatic accelerator for hypervelocity research. Rev Sci Instrum 33:209

    Article  ADS  Google Scholar 

  • Giblin I, Davis DR, Ryan EV (2004) Collisional disruption of porous icy targets simulating Kuiper belt objects. Icarus 171:487

    Article  ADS  Google Scholar 

  • Grey IDS, Burchell MJ (2003) Hypervelocity impact cratering on water ice targets at temperatures ranging from 100 K to 253 K. J Geophys Res 108(E3):6.1. doi:10.1029/2002JE001899

    Article  Google Scholar 

  • Grey IDS, Burchell MJ (2004) Hypervelocity impact craters in ammonia rich ice. Icarus 168:467

    Article  ADS  Google Scholar 

  • Grey IDS, Burchell MJ, Shrine NRG (2002) Scaling of hypervelocity impact craters in ice with impact angle. J Geophys Res 107(E10), 6.1, doi:10.1029/2001JE001515

    Google Scholar 

  • Hughes DW, Williams IP (2000) The velocity distributions of periodic comets and stream meteoroids. Mon Not R Astron Soc 315:629

    Article  ADS  Google Scholar 

  • Iijima Y et al (1995) Cratering experiments on ice: dependence of crater formation on projectile materials and scaling parameter. Geophys Res Lett 22:2005

    Article  ADS  Google Scholar 

  • Jones KB et al (2003) Morphology and origin of palimpsests on Ganymede based on Galileo observations. Icarus 164:197

    Article  ADS  Google Scholar 

  • Kato M et al (1995) Ice-on-ice impact experiments. Icarus 113:423

    Article  ADS  Google Scholar 

  • Kato M et al (2001) Shock pressure attenuation in water ice at a pressure below 1 GPA. J Geophys Res 106(E8):17567

    Article  ADS  Google Scholar 

  • Kawakami S et al (1983) Impact experiments on ice. J Geophys Res 88:5806

    Article  ADS  Google Scholar 

  • Keller HU et al (2005) Deep impact observations by OSIRIS onboard the Rosetta spacecraft. Science 310:281

    Article  ADS  Google Scholar 

  • Koschny D, Grun E (2001a) Impacts into ice-silicate mixtures: crater morphologies, volumes and depth-diameter ratios, and yield. Icarus 154:391

    Article  ADS  Google Scholar 

  • Koschny D, Grun E (2001b) Impacts into ice-silictes mixtures: ejecta mass and size distributions. Icarus 154:402

    Article  ADS  Google Scholar 

  • Kyte FT, Zhou Z, Wasson JT (1981) High noble-metal concentrations in a late Pliocene sediment. Science 292:417

    Google Scholar 

  • Lange M, Ahrens TJ (1987) Impact experiments in low-temperature ice. Icarus 69:506

    Article  ADS  Google Scholar 

  • Larson DB (1984) Shock-wave studies of ice under uniaxial strain conditions. J Glaciol 30:235

    Google Scholar 

  • Leinhardt ZM, Stewart ST (2009) Full numerical simulations of catastrophic small body collisions. Icarus 199:542

    Article  ADS  Google Scholar 

  • Leliwa-Kopystynski J, Burchell MJ, Lowen D (2008) Impact cratering and break up of the small bodies of the Solar system. Icarus 195:817

    Article  ADS  Google Scholar 

  • Lightwing A, Burchell MJ (2006) Catastrophic disruption of mixed ice:sand bodies. In: Lunar and planetary science conference XXXVII (Houston), #1565

    Google Scholar 

  • Melosh HJ (1989) Impact catering: a geologic process. Oxford University Press, Oxford

    Google Scholar 

  • Moore JM et al (1998) Large impact features on Europa: results of the Galileo nominal mission. Icarus 135:127

    Article  ADS  Google Scholar 

  • Moore JM et al (2004) Large impact features on middle-sized icy satellites. Icarus 171:421

    Article  ADS  Google Scholar 

  • Osinski GR et al (2008) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43:1939

    Article  ADS  Google Scholar 

  • Pierazzo E, Chyba CF (1999) Amino acid survival in large cometary impacts. Meteorit Planet Sci 34:909

    Article  ADS  Google Scholar 

  • Pierazzo E, Chyba CF (2002) Cometary delivery of biogenic elements to Europa. Icarus 157:120

    Article  ADS  Google Scholar 

  • Reimold WU (2007) The impact crater Bandwagon: (Some problems with the terrestrial impact cratering record). Meteorit Planet Sci 42:1467

    Article  ADS  Google Scholar 

  • Ryan EV, Davis DR, Giblin I (1999) A laboratory impact study of simulated Edgeworth–Kuiper belt objects. Icarus 142:56

    Article  ADS  Google Scholar 

  • Schenk PM (1989) Crater morphology and modification on the icy satellites of Uranus and Saturn: depth/diameter and central peak occurrence. J Geophys Res 94:3815

    Article  Google Scholar 

  • Schenk PM (1991) Ganymede and Callisto – complex crater formation and planetary crusts. J Geophys Res (The Planets) 96:15635

    Article  ADS  Google Scholar 

  • Schenk PM (1993) Central pit and dome craters – exposing the interiors of Ganymede and Callisto. J Geophys Res (The Planets) 98:7475

    Article  ADS  Google Scholar 

  • Schenk PM et al (2007) Ages and interiors: the cratering record of the galilean satellites. In: Bagenal F (ed) Jupiter. Cambridge University Press, Cambridge, pp 427–456

    Google Scholar 

  • Schultz PH (1996) Effect of impact angle on vaporization. J Geophys Res 101(E9):21117

    Article  ADS  Google Scholar 

  • Schultz PH et al (2007) The deep impact oblique impact cratering experiment. Icarus 190:295

    Article  ADS  Google Scholar 

  • Senft LE, Stewart ST (2008) Impact crater formation in icy layered terrains on Mars. Meteorit Planet Sci 43:1993

    Article  ADS  Google Scholar 

  • Smith BA et al (1979) The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science 206:927

    Article  ADS  Google Scholar 

  • Stewart ST, Ahrens TJ (2003) Shock Hugoniot of H2O ice. Geophys Res Lett 30:1332

    Article  ADS  Google Scholar 

  • Stewart ST, Ahrens TJ (2005) Shock properties of H2O ice. J Geophys Res 110. doi:10.1029/2004JE002305,E03005

  • Sugita S et al (2005) Subaru telescope observation of deep impact. Science 310:274

    Article  ADS  Google Scholar 

  • Turtle EP, Pierazzo E (2001) Thickness of a European ice shell from impact crater simulations. Science 294:1326

    Article  ADS  Google Scholar 

  • Upshaw JL, Kajs JP (1991) Micrometeoroid impact simulations using a railgun electromagnetic accelerator. IEEE Trans Magn 27:607

    Article  ADS  Google Scholar 

  • Wagner WM, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387

    Article  ADS  Google Scholar 

  • Zahnle K, Dones L, Levison H (1998) Cratering rates on the Galilean satellites. Icarus 136(202):723

    Google Scholar 

  • Zahnle K et al (2003) Cratering rates in the outer Solar system. Icarus 163:263

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Burchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burchell, M.J. (2013). Cratering on Icy Bodies. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics