Skip to main content

Proteomic Protocols for the Study of Filamentous Fungi

  • Chapter
  • First Online:
Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

In the last few years, proteomics has experienced rapid improvement in technologies and applications. Gel-based strategies have become the method of choice for both identification and quantification of proteins in most studies. The workflow of a standard gel-based proteomic experiment includes experimental design, sampling, protein extraction, protein separation, mass spectrometry analysis, protein identification, data statistical analysis, validation of the identification, quantification, and data analysis. The appropriate protocol to be used depends on and must be optimized for the biological system (i.e., fungal species, plant species, organ, tissue, cells). Preliminary steps are relevant. The choice of a good extraction protocol in a proteomic experiment is crucial because only if you can extract and solubilize a protein you have a chance of detecting and identifying it. This is more important in the case of filamentous fungi, which, owing to their particular cellular characteristics, can be considered recalcitrant biological material, making it difficult to obtain quality protein samples to proteomic analysis.

Fungi have an exceptionally robust cell wall, consisting largely of chitin, which makes up the majority of the cell mass. Because of its rigidity, cell lysis is an important element in fungal proteomics. For protein extraction, various buffer- and precipitation-based protocols are available. In most of these protocols, trichloroacetic acid (TCA) and/or acetone are used for protein precipitation, or a phenol extraction is made, where proteins are solubilized in the phenolic phase and then are precipitated with methanol and ammonium sulfate. These methods also eliminate some contaminants abundant in fungal material (such as polysaccharides, lipids, nucleic acids, or phenolic compounds) that affect the protein isoelectrofocusing and electrophoresis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Broad Institute Database, http://broadinstitute.org/­science/project/fungal-genomeinitiative

References

  1. Weiss W, Gorg A (2009) High-resolution two-dimensional electrophoresis. Methods Mol Biol 564:13–32

    Article  PubMed  CAS  Google Scholar 

  2. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  3. Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  PubMed  CAS  Google Scholar 

  4. Gonzalez-Fernandez R, Prats P, Jorrin-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol Volume 2010 (2010), Article ID 932527, 36 pages, doi:10.1155/2010/932527

    Article  PubMed  Google Scholar 

  5. Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  PubMed  CAS  Google Scholar 

  6. Egan MJ, Talbot NJ (2008) Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi. Curr Opin Plant Biol 11:367–372

    Article  PubMed  CAS  Google Scholar 

  7. Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Trends Biotechnol 25:395–400

    Article  PubMed  CAS  Google Scholar 

  8. Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M et al (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Article  PubMed  CAS  Google Scholar 

  9. Rampitsch C, Bykova NV, McCallum B, Beimcik E, Ens W (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6:1897–1907

    Article  PubMed  CAS  Google Scholar 

  10. Deising HB, Kamoun S (2009) The secretome of plant-associated fungi and oomycetes. Springer, Berlin, Heidelberg, pp 173–180

    Google Scholar 

  11. González-Fernández R and Jorrin-Novo JV (2010) Proteomics of fungal plant pathogens: the case of Botrytis cinerea. Vilas AM (ed.). Formatex Research Center, p. 205–217

    Google Scholar 

  12. Ruiz-Herrera J (1992) Fungal cell wall: structure, synthesis and assembly. CRC Press, Boca Raton, FL

    Google Scholar 

  13. Ebstrup T, Saalbach G, Egsgaard H (2005) A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics 5:2839–2848

    Article  PubMed  CAS  Google Scholar 

  14. Grinyer J, Kautto L, Traini M, Willows RD, Te’o J, Bergquist P et al (2007) Proteome mapping of the Trichoderma reesei 20S proteasome. Curr Genet 51:79–88

    Article  PubMed  CAS  Google Scholar 

  15. Melin P, Schnurer J, Wagner EG (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267:695–702

    Article  PubMed  CAS  Google Scholar 

  16. Bohmer M, Colby T, Bohmer C, Brautigam A, Schmidt J, Bolker M (2007) Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 7:675–685

    Article  PubMed  Google Scholar 

  17. Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  PubMed  CAS  Google Scholar 

  18. Grinyer J, McKay M, Nevalainen H, Herbert BR (2004) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  PubMed  CAS  Google Scholar 

  19. Sulc M, Peslova K, Zabka M, Hajduch M, Havlicek V (2009) Biomarkers of Aspergillus spores: strain typing and protein identification. Int J Mass Spectrom 280:162–168

    Article  CAS  Google Scholar 

  20. Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    Article  PubMed  CAS  Google Scholar 

  21. Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    Article  PubMed  CAS  Google Scholar 

  22. Fernandez-Acero FJ, Colby T, Harzen A, Cantoral JM, Schmidt J (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9:2892–2902

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbu M, Camafeita E et al (2007) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207–215

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbu M, Camafeita E et al (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6(Suppl 1):S88–S96

    Article  PubMed  Google Scholar 

  25. Hernandez-Macedo ML, Ferraz A, Rodriguez J, Ottoboni LM, De Mello MP (2002) Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis 23:655–661

    Article  PubMed  CAS  Google Scholar 

  26. Shimizu M, Yuda N, Nakamura T, Tanaka H, Wariishi H (2005) Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 5:3919–3931

    Article  PubMed  CAS  Google Scholar 

  27. Yajima W, Kav NN (2006) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6:5995–6007

    Article  PubMed  CAS  Google Scholar 

  28. Bringans S, Hane JK, Casey T, Tan KC, Lipscombe R, Solomon PS et al (2009) Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics 10:301

    Article  PubMed  Google Scholar 

  29. Cao T, Kim YM, Kav NN, Strelkov SE (2009) A proteomic evaluation of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Proteomics 9:1177–1196

    Article  PubMed  CAS  Google Scholar 

  30. El-Bebany AF, Rampitsch C, Daayf F (2010) Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness. Proteomics 10:289–303

    Article  PubMed  CAS  Google Scholar 

  31. Lakshman DK, Natarajan SS, Lakshman S, Garrett WM, Dhar AK (2008) Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani. Mycologia 100:867–875

    Article  PubMed  CAS  Google Scholar 

  32. Tan KC, Heazlewood JL, Millar AH, Thomson G, Oliver RP, Solomon PS (2008) A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. Eukaryot Cell 7:1916–1929

    Article  PubMed  CAS  Google Scholar 

  33. Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA et al (2008) Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 8:2256–2265

    Article  PubMed  CAS  Google Scholar 

  34. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  Google Scholar 

  35. Nandakumar MP, Shen J, Raman B, Marten MR (2003) Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via naOH for two-dimensional electrophoresis. J Proteome Res 2:89–93

    Article  PubMed  CAS  Google Scholar 

  36. Rabilloud T (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19:758–760

    Article  PubMed  CAS  Google Scholar 

  37. Everberg H, Gustavasson N, Tjerned F (2008) Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems. Methods Mol Biol 424:403–412

    Article  PubMed  CAS  Google Scholar 

  38. Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA (2006) Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 49:178–189

    Article  PubMed  CAS  Google Scholar 

  39. Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253

    Article  PubMed  CAS  Google Scholar 

  40. Rabilloud T (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17:813–829

    Article  PubMed  CAS  Google Scholar 

  41. Rabilloud T, Adessi C, Giraudel A, Lunardi J (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18:307–316

    Article  PubMed  CAS  Google Scholar 

  42. Herbert BR, Grinyer J, McCarthy JT, Isaacs M, Harry EJ, Nevalainen H et al (2006) Improved 2-DE of microorganisms after acidic extraction. Electrophoresis 27:1630–1640

    Article  PubMed  CAS  Google Scholar 

  43. Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M et al (2008) Proteomics analysis of “Rovabiot Excel,” a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol 35:1659–1668

    Article  PubMed  CAS  Google Scholar 

  44. Kao SH, Wong HK, Chiang CY, Chen HM (2008) Evaluating the compatibility of three colorimetric protein assays for two-dimensional electrophoresis experiments. Proteomics 8:2178–2184

    Article  PubMed  CAS  Google Scholar 

  45. Fragner D, Zomorrodi M, Kues U, Majcherczyk A (2009) Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocellulose. Electrophoresis 30:2431–2441

    Article  PubMed  CAS  Google Scholar 

  46. Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    Article  PubMed  CAS  Google Scholar 

  47. Medina ML and Francisco WA (2008) Isolation and enrichment of secreted proteins from filamentous fungi. SpringerLink (ed.). Humana Press, p. 275–285

    Google Scholar 

  48. Ravalason H, Jan G, Molle D, Pasco M, Coutinho PM, Lapierre C et al (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80:719–733

    Article  PubMed  CAS  Google Scholar 

  49. Vincent D, Balesdent MH, Gibon J, Claverol S, Lapaillerie D, Lomenech A et al (2009) Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE. Electrophoresis 30:4118–4136

    Article  PubMed  CAS  Google Scholar 

  50. Zorn H, Peters T, Nimtz M, Berger RG (2005) The secretome of Pleurotus sapidus. Proteomics 5:4832–4838

    Article  PubMed  CAS  Google Scholar 

  51. Fernandez-Acero FJ, Colby T, Harzen A, Carbu M, Wiencke U, Cantoral JM et al (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10(12):2270–80

    Article  PubMed  CAS  Google Scholar 

  52. Espino JJ, Gutierrez-Sanchez G, Brito N, Shah P, Orlando R, Gonzalez C (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    Article  PubMed  CAS  Google Scholar 

  53. Supek F, Peharec P, Krsnik-Rasol M, Smuc T (2008) Enhanced analytical power of SDS-PAGE using machine learning algorithms. Proteomics 8:28–31

    Article  PubMed  CAS  Google Scholar 

  54. Fryksdale BG, Jedrzejewski PT, Wong DL, Gaertner AL, Miller BS (2002) Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry for proteomic analysis. Electrophoresis 23:2184–2193

    Article  PubMed  CAS  Google Scholar 

  55. Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5:3153–3161

    Article  PubMed  CAS  Google Scholar 

  56. Medina ML, Kiernan UA, Francisco WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41:327–335

    Article  PubMed  CAS  Google Scholar 

  57. Matis M, Zakelj-Mavric M, Peter-Katalinic J (2005) Mass spectrometry and database search in the analysis of proteins from the fungus Pleurotus ostreatus. Proteomics 5:67–75

    Article  PubMed  CAS  Google Scholar 

  58. Vanden Wymelenberg A, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA (2006) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877

    Article  PubMed  CAS  Google Scholar 

  59. Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    Article  PubMed  CAS  Google Scholar 

  60. Haynes PA, Roberts TH (2007) Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 7:2963–2975

    Article  PubMed  CAS  Google Scholar 

  61. Pirondini A, Visioli G, Malcevschi A, Marmiroli N (2006) A 2-D liquid-phase chromatography for proteomic analysis in plant tissues. J Chromatogr B Analyt Technol Biomed Life Sci 833:91–100

    Article  PubMed  CAS  Google Scholar 

  62. Recorbet G, Rogniaux H, Gianinazzi-Pearson V, Dumasgaudot E (2009) Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. New Phytol 181:248–260

    Article  PubMed  CAS  Google Scholar 

  63. Ye M, Jiang X, Feng S, Tian R, Zou H (2007) Advances in chromatographic techniques and methods in shotgun proteome analysis. Trends Anal Chem 26:80–84

    Article  CAS  Google Scholar 

  64. Cooper B, Neelam A, Campbell KB, Lee J, Liu G, Garrett WM et al (2007) Protein accumulation in the germinating Uromyces appendiculatus uredospore. Mol Plant Microbe Interact 20:857–866

    Article  PubMed  CAS  Google Scholar 

  65. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  66. Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787–797

    Article  PubMed  CAS  Google Scholar 

  67. Harder A (2008) Sample preparation procedure for cellular fungi. Methods Mol Biol 425:265–273

    Article  PubMed  CAS  Google Scholar 

  68. Gusakov A, Semenova M, Sinitsyn A (2010) Mass spectrometry in the study of extracellular enzymes produced by filamentous fungi. J Anal Chem 65:1446–1461

    Article  CAS  Google Scholar 

  69. de Oliveira JM, de Graaff LH (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol 89:225–237

    Article  PubMed  Google Scholar 

  70. Maldonado AM, Echevarria-Zomeño S, Jean-Baptiste S, Hernandez M, Jorrin-Novo JV (2008) Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J Proteomics 71:461–472

    Article  PubMed  CAS  Google Scholar 

  71. Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  PubMed  CAS  Google Scholar 

  72. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  73. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  74. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  75. Pontecorvo G, Roper JA, Forbes E (1953) Genetic recombination without sexual reproduction in Aspergillus niger. J Gen Microbiol 8:198–210

    Article  PubMed  CAS  Google Scholar 

  76. Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (BotBank Project, EUI2008-03686), the Regional Government of Andalusia (Junta de Andalucía) and the University of Córdoba (AGR-0164: Agricultural and Plant Biochemistry and Proteomics Research Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel González Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fernández, R.G., Novo, J.V.J. (2013). Proteomic Protocols for the Study of Filamentous Fungi. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_24

Download citation

Publish with us

Policies and ethics