Skip to main content

Phonemic Representations and Categories

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

Current ideas of how the brain extracts phonemic content from the acoustic stream of speech will be discussed. Physiological data obtained from humans and non-human primates will be emphasized supporting modern theories positing that phonemic perception is a categorization task involving the parsing of the speech signal into a multidimensional acoustic space that allows extraction of phonemically relevant features. The importance of temporal processing will be stressed. Speech unfolds over time, and auditory cortex possesses a temporal processing fidelity that promotes both the parsing of the signal into discrete units amenable for speech decoding, and provides directly relevant information for phonemic classification. It will be shown how basic rules of auditory cortical physiology help determine several contextual effects in phonemic perception. The utility of physiology as an independent means to assess hypotheses in speech perception will be considered. Reference will be made to hypotheses proposing how stop consonants are encoded, and those postulating that developmental language abnormalities can be the result of abnormally prolonged temporal windows of integration. Physiologic transformations that occur as processing extends out from primary cortical areas into higher-order cortical regions will be examined. Emphasis will be on summarizing the results of studies using higher spatial resolution techniques, such as those offered by intracranial recordings and functional magnetic resonance imaging. Finally, it will be argued that a modular model of phonemic categorization may not adequately explain speech encoding, and that the process can be better clarified by invoking more dynamic and interactive network mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., & Merzenich, M. M. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences of the USA, 98, 13367–13372.

    CAS  Google Scholar 

  • Alexander, J. M., & Kluender, K. R. (2008). Spectral tilt change in stop consonant perception. Journal of the Acoustical Society of America, 123, 386–396.

    PubMed  Google Scholar 

  • Alexander, J. M., & Kluender, K. R. (2009). Spectral tilt change in stop consonant perception by listeners with hearing impairment. Journal of Speech, Language, and Hearing Research, 52, 653–670.

    PubMed  Google Scholar 

  • Anderson, S., Skoe, E., Chandrasekaran, B., & Kraus, N. (2010). Neural timing is linked to speech perception in noise. Journal of Neuroscience, 30, 4922–4926.

    PubMed  CAS  Google Scholar 

  • Atencio, C. A., Blake, D. T., Strata, F., Cheung, S. W., Merzenich, M. M., & Schreiner, C. E. (2007). Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey. Journal of Neurophysiology, 98, 2182–2195.

    PubMed  Google Scholar 

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61, 467–480.

    PubMed  CAS  Google Scholar 

  • Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice selective areas in human auditory cortex. Nature, 403, 309–312.

    PubMed  CAS  Google Scholar 

  • Besle J., Fischer, C., Bidet-Caulet, A., Lecaignard, F., Bertrand, O., & Giard, M.-H. (2008). Visual activation and audiovisual interactions in the auditory cortex during speech perception: Intracranial recordings in humans. Journal of Neuroscience, 28, 14301–14310.

    PubMed  CAS  Google Scholar 

  • Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10, 512–528.

    PubMed  CAS  Google Scholar 

  • Bitterman, Y., Mukamel, R., Malach, R., Fried, I., & Nelken, I. (2008). Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature, 451, 197–201.

    PubMed  CAS  Google Scholar 

  • Blumstein, S. E., & Stevens, K. N. (1979). Acoustic invariance in speech production: Evidence from measurements of the spectral characteristics of stop consonants. Journal of the Acoustical Society of America, 66, 1001–1017.

    PubMed  CAS  Google Scholar 

  • Blumstein, S. E., & Stevens, K. N. (1980). Perceptual invariance and onset spectra for stop consonant vowel environments. Journal of the Acoustical Society of America, 67, 648–662.

    PubMed  CAS  Google Scholar 

  • Boatman, D. F., & Miglioretti, D. L. (2005). Cortical sites critical for speech discrimination in normal and impaired listeners. Journal of Neuroscience, 25, 5475–5480.

    PubMed  CAS  Google Scholar 

  • Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8, 389–395.

    PubMed  CAS  Google Scholar 

  • Bonte, M., Valente, G., & Formisano, E. (2009). Dynamic and task-dependent encoding of speech and voice by phase reorganization of cortical oscillations. Journal of Neuroscience, 29, 1699–1706.

    PubMed  Google Scholar 

  • Brenner, C. A., Krishnan, G. P., Vohs, J. L., Ahn, W.-Y., Hetrick, W. P., Morzorati, S. L., & O’Donnell, B. F. (2009). Steady state responses: Electrophysiological assessment of sensory function in schizophrenia. Schizophrenia Bulletin, 35, 1065–1077.

    PubMed  Google Scholar 

  • Brosch, M., & Schreiner, C. E. (1997). Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology, 77, 923–943.

    PubMed  CAS  Google Scholar 

  • Brosch, M., & Schreiner, C. E. (2000). Sequence sensitivity of neurons in cat primary auditory cortex. Cerebral Cortex, 10, 1155–1167.

    PubMed  CAS  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25, 6797–6806.

    PubMed  CAS  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2011). Representation of reward feedback in primate auditory cortex. Frontiers in Systems Neuroscience, 5, article 5.

    Google Scholar 

  • Burlingame, E., Sussman, H. M., Gillam, R. B., & Hay, J. F. (2005). An investigation of speech perception in children with specific language impairment on a continuum of formant transition duration. Journal of Speech, Language, and Hearing Research, 48, 805–816.

    PubMed  Google Scholar 

  • Carney, L. H., & Geisler, C. D. (1986). A temporal analysis of auditory-nerve fiber responses to spoken stop-consonant vowels. Journal of the Acoustical Society of America, 79, 1896–1914.

    PubMed  CAS  Google Scholar 

  • Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64, 311–319.

    PubMed  CAS  Google Scholar 

  • Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13, 1428–1432.

    PubMed  CAS  Google Scholar 

  • Cho, T., & Ladefoged, P. (1999). Variation and universals in VOT: Evidence from 18 languages. Journal of Phonetics, 27, 207–229.

    Google Scholar 

  • Church, K. W. (1987). Phonological parsing and lexical retrieval. Cognition, 25, 53–69.

    PubMed  CAS  Google Scholar 

  • Cohen, Y. E., Theunissen, F., Russ, B. E., & Gill, P. (2007). Acoustic features of rhesus vocalizations and their representation in the ventrolateral prefrontal cortex. Journal of Neurophysiology, 97, 1470–1484.

    PubMed  Google Scholar 

  • Crone, N. E., Boatman, D., Gordon, B., & Hao, L. (2001). Induced electrocorticographic gamma activity during auditory perception. Clinical Neurophysiology, 112, 565–582.

    PubMed  CAS  Google Scholar 

  • Dehaene-Lambertz, G., Pallier, C., Serniclaes, W., Sprenger-Charolles, L., Jobert, A., & Dehaene, S. (2005). Neural correlates of switching from auditory to speech perception. NeuroImage, 24, 21–33.

    PubMed  Google Scholar 

  • Delgutte, B. (1980). Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. Journal of the Acoustical Society of America, 68, 843–857.

    PubMed  CAS  Google Scholar 

  • Delgutte, B., & Kiang, N. Y. S. (1984). Speech encoding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics. Journal of the Acoustical Society of America, 75, 897–907.

    PubMed  CAS  Google Scholar 

  • Dent, M. L., Brittan-Powell, E. F., Dooling, R. J., & Pierce, A. (1997). Perception of synthetic/ba/-/wa/ speech continuum by budgerigars (Melopsittacus undulatus). Journal of the Acoustical Society of America, 102, 1891–1897.

    PubMed  CAS  Google Scholar 

  • Diehl, R. L., Lotto, A. J., & Holt, L. L. (2004). Speech perception. Annual Review of Psychology, 55, 149–179.

    PubMed  Google Scholar 

  • Dronkers, N. F., Pinker, S., & Damasio, A. (2000). Language and the aphasias. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (pp. 1169–1187). New York: McGraw-Hill.

    Google Scholar 

  • Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92, 145–177.

    PubMed  Google Scholar 

  • Drullman, R., Festen, J. M., & Plomp, R. (1994a). Effect of temporal envelope smearing on speech reception. Journal of the Acoustical Society of America, 95, 1053–1064.

    PubMed  CAS  Google Scholar 

  • Drullman, R., Festen, J. M., & Plomp, R. (1994b). Effect of reducing slow temporal modulations on speech reception. Journal of the Acoustical Society of America, 95, 2670–2680.

    PubMed  CAS  Google Scholar 

  • Eilers, R. E., Gavin, W., & Wilson, W. R. (1979). Linguistic experience and phonetic perception in infancy: A crosslinguistic study. Child Development, 50, 14–18.

    PubMed  CAS  Google Scholar 

  • Engineer, C. T., Perez, C. A., Chen, Y. H., Carraway, R. S., Reed, A. C., Shetake, J. A., et al. (2008). Cortical activity patterns predict speech discrimination ability. Nature Neuroscience, 11, 603–608.

    PubMed  CAS  Google Scholar 

  • Faulkner, A., & Rosen, S. (1999). Contributions of temporal encodings of voicing, voicelessness, fundamental frequency, and amplitude variation to audio-visual and auditory speech perception. Journal of the Acoustical Society of America, 106, 2063–2073.

    PubMed  CAS  Google Scholar 

  • Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., et al. (2001). Consonance and dissonance of musical chords: Neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology, 86, 2761–2788.

    PubMed  CAS  Google Scholar 

  • Formisano, E., De Martino, F., Bonte, M., & Goebel, R. (2008). “Who” is saying “what”? Brain-based decoding of human voice and speech. Science, 322, 970–973.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2007). Adaptive changes in cortical receptive fields induced by attention to complex sounds. Journal of Neurophysiology, 98, 2337–2346.

    PubMed  Google Scholar 

  • Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P., & Shamma, S. A. (2010). Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nature Neuroscience, 13, 1011–1019.

    PubMed  CAS  Google Scholar 

  • Galaburda, A. M., & Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology, 190, 597–610.

    PubMed  CAS  Google Scholar 

  • Gervain, J., & Mehler, J. (2010). Speech perception and language acquisition in the first year of life. Annual Review of Psychology, 61, 191–218.

    PubMed  Google Scholar 

  • Geschwind, N., & Levitsky, W. (1968). Human brain: Left-right asymmetries in temporal speech region. Science, 161, 186–187.

    PubMed  CAS  Google Scholar 

  • Gillam, R. B., Loeb, D. F., Hoffman, L. M., Bohman, T., Champlin, C. A., Thibodeau, L., et al. (2008). The efficacy of Fast ForWord language intervention in school-age children with language impairment: a randomized controlled trial. Journal of Speech, Language & Hearing Research, 51, 97–119.

    Google Scholar 

  • Giraud, K., Démonet, J. F., Habib, M., Marquis, P., Chauvel, P., & Liégeois-Chauvel, C. (2005). Auditory evoked potential patterns to voiced and voiceless speech sounds in adult developmental dyslexics with persistent deficits. Cerebral Cortex, 15, 1524–1534.

    PubMed  CAS  Google Scholar 

  • Godey, B., Atencio, C. A., Bonham, B. H., Schreiner, C. E., & Cheung, S. W. (2005). Functional organization of squirrel monkey primary auditory cortex: Responses to frequency-modulation sweeps. Journal of Neurophysiology, 94, 1299–1311.

    PubMed  Google Scholar 

  • Goswami, U., Fosker, T., Huss, M., Mead, N., & Szűcs, D. (2011). Rise time and formant transition duration in the discrimination of speech sounds: The Ba–Wa distinction in developmental dyslexia. Developmental Science, 14, 34–43.

    Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25, 348–353.

    PubMed  CAS  Google Scholar 

  • Hackett, T. A. (2007). Organization and correspondence of the auditory cortex of humans and nonhuman primates. In J. H. Kaas (Ed.), Evolution of the nervous system (pp. 109–119). Oxford: Elsevier.

    Google Scholar 

  • Hahnloser, R. H. R., & Kotowicz, A. (2010). Auditory representation and memory in birdsong learning. Current Opinion in Neurobiology, 20, 332–339.

    PubMed  CAS  Google Scholar 

  • Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5, 525–532.

    PubMed  Google Scholar 

  • Hart, H. C., Palmer, A. R., & Hall, D. A. (2004). Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties. Human Brain Mapping, 21, 178–190.

    PubMed  Google Scholar 

  • Hedrick, M. S., & Younger, M. S. (2007). Perceptual weighting of stop consonant cues by normal and impaired listeners in reverberation versus noise. Journal of Speech, Language and Hearing Research, 50, 254–269.

    Google Scholar 

  • Hickok, G. (2009). The functional neuroanatomy of language. Physics of Life Reviews, 6, 121–143.

    PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.

    PubMed  CAS  Google Scholar 

  • Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. Journal of the Acoustical Society of America, 97, 3099–3111.

    PubMed  CAS  Google Scholar 

  • Hirsh. I. J. (1959). Auditory perception of temporal order. Journal of the Acoustical Society of America, 31, 759–767.

    Google Scholar 

  • Holt, L. L. (2006a). Speech categorization in context: Joint effects of nonspeech and speech precursors. Journal of the Acoustical Society of America, 119, 4016–4026.

    PubMed  Google Scholar 

  • Holt, L. L. (2006b). The mean matters: Effects of statistically defined nonspeech spectral distributions on speech categorization. Journal of the Acoustical Society of America, 120, 2801–2817.

    PubMed  Google Scholar 

  • Holt, L. L., & Lotto, A. J. (2010). Speech perception as categorization. Attention, Perception, & Psychophysics, 72, 1218–1227.

    Google Scholar 

  • Holt, L. L., Lotto, A. J., & Kluender, K. R. (2001). Influence of fundamental frequency on stop-consonant voicing perception: A case of learned covariation or auditory enhancement? Journal of the Acoustical Society of America, 109, 764–774.

    PubMed  CAS  Google Scholar 

  • Howard, M. A. III, Volkov, I. O., Abbas, P. J., Damasio, H., Ollendieck, M. C., & Granner, M. A. (1996). A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Research, 724, 260–264.

    PubMed  CAS  Google Scholar 

  • Jusczyk, P. W., Rosner, B. S., Reed, M. A., & Kennedy, L. J. (1989). Could temporal order differences underlie 2-month-olds. discrimination of English voicing contrasts? Journal of the Acoustical Society of America, 85, 1741–1749.

    PubMed  CAS  Google Scholar 

  • Kayser, C., & Logothetis, N. K. (2009). Directed interactions between auditory and superior temporal cortices and their role in sensory integration. Frontiers in Integrative Neuroscience, 3, article 7.

    Google Scholar 

  • Kayser, C., Montemurro, M. A., Logothetis, N. K., & Panzeri, S. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61, 597–608.

    PubMed  CAS  Google Scholar 

  • Keating, P. A., Mikoś, M. J., & Ganong, W. F., III. (1981). A cross-language study of range of voice onset time in the perception of initial stop voicing. Journal of the Acoustical Society of America, 70, 1261–1271.

    Google Scholar 

  • Kent, R. D. (1993). Vocal tract acoustics. Journal of Voice, 7, 97–117.

    PubMed  CAS  Google Scholar 

  • Kewley-Port, D. (1982). Measurement of formant transitions in naturally produced stop consonant-vowel syllables. Journal of the Acoustical Society of America, 72, 379–389.

    PubMed  CAS  Google Scholar 

  • Kewley-Port, D., Watson, C. S., & Foyle, D. C. (1988). Auditory temporal acuity in relation to category boundaries; speech and nonspeech stimuli. Journal of the Acoustical Society of America, 83, 1133–1145.

    PubMed  CAS  Google Scholar 

  • Kikuchi, Y., Horwitz, B., & Mishkin, M. (2010). Hierarchical auditory processing directed rostrally along the monkey’s supratemporal plane. Journal of Neuroscience, 30, 13021–13030.

    PubMed  Google Scholar 

  • Kilian-Hütten, N., Valente, G., Vroomen, J., & Formisano, E. (2011). Auditory cortex encodes the perceptual interpretation of ambiguous sound. Journal of Neuroscience, 31, 1715–1720.

    PubMed  Google Scholar 

  • Kluender, K. R. (1991). Effects of first formant onset properties on voicing judgments result from processes not specific to humans. Journal of the Acoustical Society of America, 90, 83–96.

    PubMed  CAS  Google Scholar 

  • Kluender, K. R., & Lotto, A. J. (1994). Effects of first formant onset frequency on [-voice] judgments result from auditory processes not specific to humans. Journal of the Acoustical Society of America, 95, 1044–1052.

    PubMed  CAS  Google Scholar 

  • Kluender, K. R., Diehl, R. L., & Killeen, P. R. (1987). Japanese quail can learn phonetic categories. Science, 237, 1195–1197.

    PubMed  CAS  Google Scholar 

  • Kuhl, P. (1986). Theoretical contributions of tests on animals to the special-mechanisms debate in speech. Experimental Biology, 45, 233–265.

    PubMed  CAS  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831–843.

    PubMed  CAS  Google Scholar 

  • Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713–727.

    PubMed  CAS  Google Scholar 

  • Kuhl, P. K., & Miller, J. D. (1978). Speech perception by the chinchilla: Identification functions for synthetic VOT stimuli. Journal of the Acoustical Society of America, 63, 905–917.

    PubMed  CAS  Google Scholar 

  • Kumar, A. U. (2011). Temporal processing abilities across different age groups. Journal of the American Academy of Audiology, 22, 5–12.

    PubMed  Google Scholar 

  • Kumar, S., Stephan, K. E., Warren, J. D., Friston, K. J., & Griffiths, T. D. (2007). Hierarchical processing of auditory objects in humans. PLoS Computational Biology, 3(6), e100.

    PubMed  Google Scholar 

  • Kwakye, L. D. et al., Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, article 129.

    Google Scholar 

  • Leaver, A. M., & Rauschecker, J. P. (2010). Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category. Journal of Neuroscience, 30, 7604–7612.

    PubMed  CAS  Google Scholar 

  • Leff, A. P., Schofield, T. M., Stephan, K. E., Crinion, J. T., Friston, K. J., & Price, C. J. (2008). The cortical dynamics of speech. Journal of Neuroscience, 28, 13209–13215.

    PubMed  CAS  Google Scholar 

  • Le Prell, C. G., Niemiec, A. J., & Moody, D. B. (2001). Macaque thresholds for detecting increases in intensity: Effects of formant structure. Hearing Research, 162, 29–42.

    PubMed  CAS  Google Scholar 

  • Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431–461.

    PubMed  CAS  Google Scholar 

  • Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 1621–1631.

    PubMed  Google Scholar 

  • Liégeois-Chauvel, C., de Graaf, J. B., Laguitton, V., & Chauvel, P. (1999). Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cerebral Cortex, 9, 484–496.

    PubMed  Google Scholar 

  • Lisker, L., & Abramson, A. S. (1964). A cross-language study of voicing in initial stops: Acoustical measurements. Word, 20, 384–422.

    Google Scholar 

  • Lisker, L., & Abramson, A. S. (1967). Some effects of context on voice onset time in English stops. Language and Speech, 10, 1–28.

    PubMed  CAS  Google Scholar 

  • Lotto, A. J., & Kluender, K. R. (1998). General contrast effects in speech perception: Effect of preceding liquid on stop consonant identification. Perception & Psychophysics, 60, 602–619.

    CAS  Google Scholar 

  • Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997). Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). Journal of the Acoustical Society of America, 102, 1134–1140.

    PubMed  CAS  Google Scholar 

  • Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001–1010.

    PubMed  CAS  Google Scholar 

  • Mann, V. A. (1980). Influence of preceding liquid on stop-consonant perception. Perception & Psychophysics, 28, 407–412.

    CAS  Google Scholar 

  • May, B., Moody, D. B., & Stebbins, W. C. (1989). Categorical perception of conspecific communication sounds by Japanese macaques, Macaca fuscata. Journal of the Acoustical Society of America, 85, 837–847.

    PubMed  CAS  Google Scholar 

  • Mayo, C., & Turk, A. (2004). Adult-child differences in acoustic cue weighting are influenced by segmental context: Children are not always perceptually biased toward transitions. Journal of the Acoustical Society of America, 115, 3184–3194.

    PubMed  Google Scholar 

  • McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1–86.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., & Brugge, J. F. (1973). Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research, 50, 275–296.

    PubMed  CAS  Google Scholar 

  • Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2008). Phoneme representation and classification in primary auditory cortex. Journal of the Acoustical Society of America, 123, 899–909.

    PubMed  Google Scholar 

  • Metherate, R., & Cruikshank, S. J. (1999). Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro. Experimental Brain Research, 126, 160–174.

    CAS  Google Scholar 

  • Middlebrooks, J. C. (2008). Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. Journal of Neurophysiology, 100, 76–91.

    PubMed  Google Scholar 

  • Miller, J. L., & Eimas, P. D. (1995). Speech perception: From signal to word. Annual Review of Psychology, 46, 467–492.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J. (2008a). Basic auditory processes involved in the analysis of speech sounds. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 947–963.

    Google Scholar 

  • Moore, B. C. J. (2008b). The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. Journal of the Association for Research in Otolaryngology, 9, 399–406.

    PubMed  Google Scholar 

  • Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology, 335, 437–459.

    PubMed  CAS  Google Scholar 

  • Mukamel, R. et al., Mukamel, R., Nir, Y., Harel, M., Arieli, A., Malach, R., & Fried, I. (2010). Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Human Brain Mapping, July [epub ahead of print], doi:10.1002/hbm.21100

    Google Scholar 

  • Nelken, I. (2008). Processing of complex sounds in the auditory system. Current Opinions in Neurobiology, 18, 413–417.

    CAS  Google Scholar 

  • Nourski, K. V., Reale, R. A., Oya, H., Kawasaki, H., Kovach, C.K., Chen, H., et al. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience, 29, 15564–15574.

    PubMed  CAS  Google Scholar 

  • Obleser, J., & Eisner, F. (2008). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13, 14–19.

    PubMed  Google Scholar 

  • Obleser, J., Scott, S. K., & Eulitz, C. (2006). Now you hear it, now you don’t: Transient traces of consonants and their nonspeech analogues in the human brain. Cerebral Cortex, 16, 1069–1076.

    PubMed  Google Scholar 

  • Obleser, J., Zimmermann, J., Van Meter, J., & Rauschecker, J. P. (2007). Multiple stages of auditory speech perception reflected in event-related fMRI. Cerebral Cortex, 17, 2251–2257.

    PubMed  Google Scholar 

  • Obleser, J., Eisner, F., & Kotz, S. A. (2008). Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. Journal of Neuroscience, 28, 8116–8124.

    PubMed  CAS  Google Scholar 

  • Panzeri, S., Brunel N., Logothetis, N. K., & Kayser, C. (2010). Sensory neural codes using multiplexed temporal scales. Trends in Neuroscience, 33, 111–120.

    CAS  Google Scholar 

  • Parker, E. M. (1988). Auditory constraints on the perception of voice-onset time: The influence of lower tone frequency on judgments of tone-onset simultaneity. Journal of the Acoustical Society of America, 83, 1597–1607.

    PubMed  CAS  Google Scholar 

  • Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K. (2008). A voice region in the monkey brain. Nature Neuroscience, 11, 367–374.

    PubMed  CAS  Google Scholar 

  • Pisoni, D. B. (1977). Identification and discrimination of the relative onset time of two component tones: Implications for voicing perception in stops. Journal of the Acoustical Society of America, 61, 1352–1361.

    PubMed  CAS  Google Scholar 

  • Pisoni, D. B., & Luce, P. A. (1987). Acoustic-phonetic representations in word recognition. Cognition, 25, 21–52.

    PubMed  CAS  Google Scholar 

  • Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1071–1086.

    Google Scholar 

  • Poremba, A., & Mishkin, M. (2007). Exploring the extent and function of higher order auditory cortex in rhesus monkeys. Hearing Research, 229, 14–23.

    PubMed  Google Scholar 

  • Prather, J. F., Nowicki, S., Anderson, R. C., Peters, S., & Mooney, R. (2009). Neural correlates of categorical perception in learned vocal communication. Nature Neuroscience, 12, 221–228.

    PubMed  CAS  Google Scholar 

  • Raizada, R. D. S., & Poldrack, R. A. (2007). Selective amplification of stimulus differences during categorical processing of speech. Neuron, 56, 726–740.

    PubMed  CAS  Google Scholar 

  • Raizada, R. D. S., Tsao, F.-M., Liu, H.-M. & Kuhl, P. K. (2010). Quantifying the adequacy of neural representations for a cross-language phonetic discrimination task: Prediction of individual differences. Cerebral Cortex, 20, 1–12.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2004). Processing of band-pass noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology, 91, 2578–2589.

    PubMed  Google Scholar 

  • Reale, R. A., Calvert, G. A., Thesen, T., Jenison, R. L., Kawasaki, H., Oya, H., et al. (2007). Auditory-visual processing represented in the human superior temporal gyrus. Neuroscience, 145, 162–184.

    PubMed  CAS  Google Scholar 

  • Recio, A., Rhode, W. S., Kiefte, M., & Kluender, K. R. (2002). Responses to cochlear normalized speech stimuli in the auditory nerve of cat. Journal of the Acoustical Society of America, 111, 2213–2218.

    PubMed  Google Scholar 

  • Repp, B. H. (1982). Phonetic trading relations and context effects: New experimental evidence for a speech mode of perception. Psychological Bulletin, 92, 81–110.

    PubMed  CAS  Google Scholar 

  • Roman, S., Canévet, G., Lorenzi, C., Triglia, J.-M., & Liégeois-Chauvel, C. (2004). Voice onset time encoding in patients with left and right cochlear implants. NeuroReport, 15, 601–605.

    PubMed  Google Scholar 

  • Romanski, L. M., & Averbeck, B. B. (2009). The primate cortical auditory system and neural representation of conspecific vocalizations. Annual Review of Neuroscience, 32, 315–346.

    CAS  Google Scholar 

  • Russ, B. E., Ackelson, A. L., Baker, A. E., & Cohen, Y. E. (2008a). Coding of auditory stimulus identity in the auditory non-spatial processing stream. Journal of Neurophysiology, 99, 87–95.

    PubMed  Google Scholar 

  • Russ, B. E., Orr, L. E., & Cohen, Y. E. (2008b). Prefrontal neurons predict choices during an auditory same-different task. Current Biology, 18, 1483–1488.

    PubMed  CAS  Google Scholar 

  • Sakai, M., Chimoto, S., Qin. L., & Sato, Y. (2009). Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats. BMC Neuroscience, 10, 10.

    Google Scholar 

  • Schnupp, J. W. H., Hall, T. M., Kokelaar, R. F., & Ahmed, B. (2006). Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. Journal of Neuroscience, 26, 4785–4795.

    PubMed  CAS  Google Scholar 

  • Schreiner, C. E. (1998). Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiology & Neurootology, 3, 104–122.

    CAS  Google Scholar 

  • Scott, S. K. (2005). Auditory processing—speech, space, and auditory objects. Current Opinion in Neurobiology, 15, 197–201.

    PubMed  CAS  Google Scholar 

  • Scott, B. H., Malone, B. J., & Semple, M. N. (2011). Transformation of temporal processing across auditory cortex of awake macaques. Journal of Neurophysiology, 105, 712–730.

    PubMed  Google Scholar 

  • Shamma, S. A. (1985). Speech processing in the auditory system I: The representation of speech sounds in the responses of the auditory nerve. Journal of the Acoustical Society of America, 78, 1612–1621.

    PubMed  CAS  Google Scholar 

  • Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303–304.

    PubMed  CAS  Google Scholar 

  • Shapleske, J., Rossell, S. L., Woodruff, P. W. R., & David, A. S. (1999). The planum temporale: A systematic, quantitative review of its structural, functional, and clinical significance. Brain Research Reviews, 29, 26–49.

    PubMed  CAS  Google Scholar 

  • Sharma, A., & Dorman, M. F. (2000). Neurophysiologic correlates of cross-language phonetic perception. Journal of the Acoustical Society of America, 107, 2697–2703.

    PubMed  CAS  Google Scholar 

  • Sinex, D. G. (1993). Auditory nerve fiber representations of cues to voicing in syllable-final stop consonants. Journal of the Acoustical Society of America, 94, 1351–1362.

    PubMed  CAS  Google Scholar 

  • Sinex, D. G., & McDonald, L. P. (1988). Average discharge rate representation of voice onset time in the chinchilla auditory nerve. Journal of the Acoustical Society of America, 83, 1817–1827.

    PubMed  CAS  Google Scholar 

  • Sinex, D. G., & Narayan, S. S. (1994). Auditory-nerve fiber representation of temporal cues in word-medial stop consonants. Journal of the Acoustical Society of America, 95, 897–903.

    PubMed  CAS  Google Scholar 

  • Sinnott, J. M., & Adams, F. S. (1987). Differences in human and monkey sensitivity to acoustic cues underlying voicing contrasts. Journal of the Acoustical Society of America, 82, 1539–1547.

    PubMed  CAS  Google Scholar 

  • Soli, S. D. (1983). The role of spectral cues in discrimination of voice onset time differences. Journal of the Acoustical Society of America, 73, 2150–2165.

    PubMed  CAS  Google Scholar 

  • Spitsyna, G., Warren, J. E., Scott, S. K., Turkheimer, F. E., & Wise, R. J. S. (2006). Converging language streams in the human temporal lobe. Journal of Neuroscience, 26, 7328–7336.

    PubMed  CAS  Google Scholar 

  • Steinschneider, M., & Fishman, Y. I. (2011). Enhanced physiologic discriminability of stop consonants with prolonged formant transitions in awake monkeys based on the tonotopic organization of primary auditory cortex. Hearing Research, 271, 103–114.

    PubMed  Google Scholar 

  • Steinschneider, M., Tenke, C., Schroeder, C., Javitt, D., Simpson, G. V., Arezzo, J. C., & Vaughan, H. G., Jr. (1992). Cellular generators of the cortical auditory evoked potential initial component. Electroencephalography and Clinical Neurophysiology, 84, 196–200.

    PubMed  CAS  Google Scholar 

  • Steinschneider, M., Reser, D., Schroeder, C. E., & Arezzo, J. C. (1995). Tonotopic organization of responses reflecting stop consonant place of articulation in primary auditory cortex (A1) of the monkey. Brain Research, 674, 147–152.

    PubMed  CAS  Google Scholar 

  • Steinschneider, M., Volkov, I. O., Noh, M. D., Garell, P. C., & Howard, M. A. III. (1999). Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex. Journal of Neurophysiology, 82, 2346–2357.

    PubMed  CAS  Google Scholar 

  • Steinschneider, M., Fishman, Y. I., & Arezzo, J. C. (2003). Representation of the voice onset time (VOT) speech parameter in population responses within primary auditory cortex of the awake monkey. Journal of the Acoustical Society of America, 114, 307–321.

    PubMed  Google Scholar 

  • Steinschneider, M., Volkov, I. O., Fishman, Y. I., Oya, H., Arezzo, J. C., & Howard, M. A. III. (2005). Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter. Cerebral Cortex, 15, 170–186.

    PubMed  Google Scholar 

  • Steinschneider, M., Fishman, Y. I., & Arezzo, J. C. (2008). Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cerebral Cortex, 18, 610–625.

    PubMed  Google Scholar 

  • Steinschneider, M., Nourski, K. V., Kawasaki, H., Oya, H., Brugge, J. F., & Howard, M. A. III. (2011). Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus. Cerebral Cortex, 21, 2332–2347.

    PubMed  Google Scholar 

  • Stevens, K. N. (1981). Constraints imposed by the auditory system on the properties used to classify speech sounds: Data from phonology, acoustics, and psychoacoustics. In T. Myers, J. Laver, & J. Anderson (Eds.), The cognitive representation of speech (pp. 61–74). Amsterdam: North-Holland.

    Google Scholar 

  • Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. Journal of the Acoustical Society of America, 111, 1872–1891.

    PubMed  Google Scholar 

  • Stevens, K. N., & Blumstein, S. E. (1978). Invariant cues for place of articulation in stop consonants. Journal of the Acoustical Society of America, 64, 1358–1368.

    PubMed  CAS  Google Scholar 

  • Summerfield, Q., & Haggard, M. (1977). On the dissociation of spectral and temporal cues to the voicing distinction in initial stop consonants. Journal of the Acoustical Society of America, 62, 435–448.

    PubMed  CAS  Google Scholar 

  • Sussman, H. M., Bessell, N., Dalston, E., & Majors, T. (1997). An investigation of stop place of articulation as a function of syllable position: A locus equation perspective. Journal of the Acoustical Society of America, 101, 2826–2838.

    PubMed  CAS  Google Scholar 

  • Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721–728.

    PubMed  CAS  Google Scholar 

  • Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing. Annals of the New York Academy of Sciences, 682, 27–47.

    PubMed  CAS  Google Scholar 

  • Tavabi, K., Obleser, J., Dobel, C., & Pantev, C. (2007). Auditory evoked fields differentially encode speech features: An MEG investigation of the P50m and N100m time courses during syllable processing. European Journal of Neuroscience, 25, 3155–3162.

    PubMed  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292, 290–293.

    PubMed  CAS  Google Scholar 

  • Trébuchon-Da Fonseca, A., Giraud, K., Badier, J.-M., Chauvel, P., & Liégeois-Chauvel, C. (2005). Hemispheric lateralization of voice onset time (VOT) comparison between depth and scalp EEG recordings. NeuroImage, 27, 1–14.

    PubMed  Google Scholar 

  • Tsunada, J., Lee, J. H., & Cohen, Y. E. (2011). Representation of speech categories in the primate auditory cortex. Journal of Neurophysiology, 105, 2634–2646.

    PubMed  Google Scholar 

  • Turkeltaub, P. E., & Coslett, H. B. (2010). Localization of sublexical speech perception components. Brain & Language, 114, 1–15.

    Google Scholar 

  • Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.

    PubMed  CAS  Google Scholar 

  • Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440–10453.

    PubMed  CAS  Google Scholar 

  • Upadhyay, J., Silver, A., Knaus, T. A., Lindgren, K. A., Ducros, M., Kim, D.-S., & Tager-Flusberg, H. (2008). Effective and structural connectivity in the human auditory cortex. Journal of Neuroscience, 28, 3341–3349.

    PubMed  CAS  Google Scholar 

  • Vandermosten, M., Boets, B., Luts, H., Poelmans, H., Golestani, N., Wouters, J., & Ghesquière, P. (2010). Adults with dyslexia are impaired in categorizing speech and nonspeech sounds on the basis of temporal cues. Proceedings of the National Academy of Sciences of the USA, 177, 10389–10394.

    Google Scholar 

  • Wallace, A. B., & Blumstein, S. E. (2009). Temporal integration in vowel perception. Journal of the Acoustical Society of America, 125, 1704–1711.

    PubMed  Google Scholar 

  • Wang, X., Merzenich, M. M., Beitel, R., & Schreiner, C. E. (1995). Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: Temporal and spectral characteristics. Journal of Neurophysiology, 74, 2685–2706.

    PubMed  CAS  Google Scholar 

  • Wang, X., Lu, T., Snider, R. K., & Liang, L. (2005). Sustained firing in auditory cortex by preferred stimuli. Nature, 435, 341–346.

    PubMed  CAS  Google Scholar 

  • Wang, X., Lu, T., Bendor, D., & Bartlett, E. (2008). Neural coding of temporal information in auditory thalamus and cortex. Neuroscience, 154, 294–303.

    PubMed  CAS  Google Scholar 

  • Werker, J. F., & Tees, R. C. (1999). Influences on infant speech processing: Toward a new synthesis. Annual Review of Psychology, 50, 509–535.

    PubMed  CAS  Google Scholar 

  • Werker, J. F., & Yeung, H. H. (2005). Infant speech perception bootstraps word learning. Trends in Cognitive Sciences, 9, 519–527.

    PubMed  Google Scholar 

  • Woolley, Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8, 1371–1379.

    CAS  Google Scholar 

  • Wright, B. A., Lombardino, L. J., King, W. M., Puranik, C. S., Leonard, C. M., & Merzenich, M. M. (1997). Deficits in auditory temporal and spectral resolution in language-impaired children. Nature, 387, 176–178.

    PubMed  CAS  Google Scholar 

  • Young, E. D. (2008). Neural representation of spectral and temporal information in speech. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 923–945.

    Google Scholar 

  • Yrttiaho, S., Tiitinen, H., Alku, P., Miettinen, I., & May, P. J. (2010). Temporal integration of vowel periodicity in the auditory cortex. Journal of the Acoustical Society of America, 128, 224–234.

    PubMed  Google Scholar 

  • Zatorre, R. J., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1087–1104.

    Google Scholar 

  • Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences, 6, 37–46.

    PubMed  Google Scholar 

  • Zeng, F.-G., & Liu, S. (2006). Speech perception in individuals with auditory neuropathy. Journal of Speech, Language, and Hearing Research, 49, 367–380.

    PubMed  Google Scholar 

  • Zevin, J. D., Yang, J., Skipper, J. I., & McCandliss, B. D. (2010). Domain general change detection accounts for “dishabituation” effects in temporal–parietal regions in functional magnetic resonance imaging studies of speech perception. Journal of Neuroscience, 30, 1110–1117.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants DC-00657 and DC-04290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Steinschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steinschneider, M. (2013). Phonemic Representations and Categories. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_6

Download citation

Publish with us

Policies and ethics