Skip to main content

Endogenous Remyelination in the CNS

  • Chapter
  • First Online:
Myelin Repair and Neuroprotection in Multiple Sclerosis

Abstract

In striking contrast to the generally inadequate attempts at regeneration that follows damage to neuronal elements, the sequela to CNS demyelination is often a robust regenerative process called remyelination. In this chapter, we (1) review current knowledge on the biology of remyelination, including the cells and molecular signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for enhancing endogenous remyelination therapeutically in demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert M, Antel J, Bruck W, Stadelmann C (2007) Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol 17:129–138

    PubMed  Google Scholar 

  • Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H (2007) RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 6:793–810

    PubMed  CAS  Google Scholar 

  • Armstrong RC, Le TQ, Frost EE, Borke RC, Vana AC (2002) Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J Neurosci 22:8574–8585

    PubMed  CAS  Google Scholar 

  • Armstrong RC, Le TQ, Flint NC, Vana AC, Zhou YX (2006) Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol 65:245–256

    PubMed  Google Scholar 

  • Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JPY (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122

    PubMed  CAS  Google Scholar 

  • Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832

    PubMed  CAS  Google Scholar 

  • Arnett HA, Fancy SPJ, Alberta JA, Zhao C, Plant SR, Raine CS, Rowitch DH, Franklin RJM, Stiles CD (2004) The bHLH transcription factor Olig1 is required for repair of demyelinated lesions in the CNS. Science 306:2111–2115

    PubMed  CAS  Google Scholar 

  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    PubMed  CAS  Google Scholar 

  • Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, ffrench-Constant C, Franklin RJM, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–481

    PubMed  Google Scholar 

  • Bieber AJ, Kerr S, Rodriguez M (2003) Efficient central nervous system remyelination requires T cells. Ann Neurol 53:680–684

    PubMed  Google Scholar 

  • Blakemore WF (1975) Remyelination by Schwann cells of axons demyelinated by intraspinal injection of 6-aminonicotinamide in the rat. J Neurocytol 4:745–757

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Franklin RJM (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212

    PubMed  CAS  Google Scholar 

  • Brinkmann BG, Agarwal A, Serada MW, Garratt AN, Mueller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyuschkin K, Goebbels S, Fischer TM, Franklin RJM, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–594

    PubMed  CAS  Google Scholar 

  • Caillava C, Vandenbosch R, Jablonska B, Deboux C, Spigoni G, Gallo V, Malgrange B, Baron-Van Evercooren A (2011) Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system. J Cell Biol 193:397–407

    PubMed  CAS  Google Scholar 

  • Cannella B, Hoban CJ, Gao YL, Garcia-Arenas R, Lawson D, Marchionni M, Gwynne D, Raine CS (1998) The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci USA 95:10100–10105

    PubMed  CAS  Google Scholar 

  • Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    PubMed  CAS  Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    PubMed  Google Scholar 

  • Chari DM, Blakemore WF (2002) Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 37:307–313

    PubMed  Google Scholar 

  • Chari DM, Crang AJ, Blakemore WF (2003) Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J Neuropathol Exp Neurol 62:908–916

    PubMed  CAS  Google Scholar 

  • Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, Zalc B, Lubetzki C (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci USA 97:7585–7590

    PubMed  CAS  Google Scholar 

  • Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, Zalc B, Lubetzki C (2002) Re-expression of PSA-NCAM by demyelinated axons: an inhibitor or remyelination in multiple sclerosis? Brain 125:1972–1979

    PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    PubMed  CAS  Google Scholar 

  • Crockett DP, Burshteyn M, Garcia C, Muggironi M, Casaccia-Bonnefil P (2005) Number of oligodendrocyte progenitors recruited to the lesioned spinal cord is modulated by the levels of the cell cycle regulatory protein p27Kip-1. Glia 49:301–308

    PubMed  Google Scholar 

  • Dawson MRL, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488

    PubMed  CAS  Google Scholar 

  • Duncan ID, Hoffman RL (1997) Schwann cell invasion of the central nervous system of the myelin mutants. J Anat 190:35–49

    PubMed  Google Scholar 

  • Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106:6832–6836

    PubMed  CAS  Google Scholar 

  • Dusart I, Marty S, Peschanski M (1992) Demyelination and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system. Neuroscience 5:137–148

    Google Scholar 

  • Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH, Montague P, Barrie JA, McCulloch MC, Duncan ID, Garbern J, Nave KA, Griffiths IR (2004) Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol 166:121–131

    PubMed  CAS  Google Scholar 

  • Etxeberria A, Mangin JM, Aguirre A, Gallo V (2010) Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13:287–289

    PubMed  CAS  Google Scholar 

  • Fancy SPJ, Zhao C, Franklin RJM (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27:247–254

    PubMed  CAS  Google Scholar 

  • Fancy SPJ, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJM, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585

    PubMed  CAS  Google Scholar 

  • Fancy SPJ, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJM (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225:18–23

    PubMed  CAS  Google Scholar 

  • Fancy SPJ, Chan JR, Baranzini SE, Franklin RJM, Rowitch DH (2011a) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:19–41

    Google Scholar 

  • Fancy SPJ, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJM, Rowitch DH (2011b) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14(8):1009–1016

    PubMed  CAS  Google Scholar 

  • Felts PA, Woolston AM, Fernando HB, Asquith S, Gregson NA, Mizzi OJ, Smith KJ (2005) Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 128:1649–1666

    PubMed  Google Scholar 

  • Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, Avila RL, Kirschner DA, Macklin WB (2008) Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 28:7174–7183

    PubMed  CAS  Google Scholar 

  • Franklin RJM (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714

    PubMed  CAS  Google Scholar 

  • Franklin RJM, Blakemore WF (1993) Requirements for Schwann cell migration within CNS environments: a viewpoint. Int J Dev Neurosci 11:641–649

    PubMed  CAS  Google Scholar 

  • Franklin RJM, ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    PubMed  CAS  Google Scholar 

  • Franklin RJM, Hinks GL (1999) Understanding CNS remyelination – clues from developmental and regeneration biology. J Neurosci Res 58:207–213

    PubMed  CAS  Google Scholar 

  • Garbern JY, Yool DA, Moore GJ, Wilds IB, Faulk MW, Klugmann M, Nave KA, Sistermans EA, van der Knaap MS, Bird TD, Shy ME, Kamholz JA, Griffiths IR (2002) Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125:551–561

    PubMed  Google Scholar 

  • Glezer I, Lapointe A, Rivest S (2006) Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 20:750–752

    PubMed  CAS  Google Scholar 

  • Goldschmidt T, Antel J, Konig FB, Bruck W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72:1914–1921

    PubMed  CAS  Google Scholar 

  • Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, Nave KA (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613

    PubMed  CAS  Google Scholar 

  • Hampton DW, Anderson J, Pryce G, Irvine KA, Giovannoni G, Fawcett JW, Compston A, Franklin RJM, Baker D, Chandran S (2008) An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. J Neuroimmunol 201–202:200–211

    PubMed  Google Scholar 

  • Harrington EP, Zhao C, Fancy SPJ, Kaing S, Franklin RJM, Rowitch DH (2010) Oligodendrocyte PTEN required for myelin and axonal integrity not remyelination. Ann Neurol 68:703–726

    PubMed  CAS  Google Scholar 

  • Hinks GL, Franklin RJM (1999) Distinctive patterns of PDGF-A, FGF-2, IGF-I and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 14:153–168

    PubMed  CAS  Google Scholar 

  • Hinks GL, Franklin RJM (2000) Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 16:542–556

    PubMed  CAS  Google Scholar 

  • Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    PubMed  CAS  Google Scholar 

  • Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, Takeda Y, Chia W, Sankar N, Ng YK, Ling EA, Maciag T, Small D, Trifonova R, Kopan R, Okano H, Nakafuku M, Chiba S, Hirai H, Aster JC, Schachner M, Pallen CJ, Watanabe K, Xiao ZC (2003) F3/Contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115:163–175

    PubMed  CAS  Google Scholar 

  • Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, Kagechika H, Bauer J, Zhao C, Baron van Evercooren A, Chambon P, ffrench-Constant C, Franklin RJM (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14:45–53

    PubMed  CAS  Google Scholar 

  • Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477

    PubMed  CAS  Google Scholar 

  • Itoyama Y, Webster HD, Richardson EP Jr, Trapp BD (1983) Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann Neurol 14:339–346

    PubMed  CAS  Google Scholar 

  • Itoyama Y, Ohnishi A, Tateishi J, Kuroiwa Y, Webster HD (1985) Spinal cord multiple sclerosis lesions in Japanese patients: Schwann cell remyelination occurs in areas that lack glial fibrillary acidic protein (GFAP). Acta Neuropathol (Berl) 65:217–223

    CAS  Google Scholar 

  • Jeffery ND, Crang AJ, O’Leary MT, Hodge SJ, Blakemore WF (1999) Behavioural consequences of oligodendrocyte progenitor cell transplantation into demyelinating lesions in rat spinal cord. Eur J Neurosci 11:1508–1514

    PubMed  CAS  Google Scholar 

  • John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8:1115–1121

    PubMed  CAS  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    PubMed  CAS  Google Scholar 

  • Kotter MR, Zhao C, van Rooijen N, Franklin RJM (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166–175

    PubMed  CAS  Google Scholar 

  • Kotter MR, Li WW, Zhao C, Franklin RJM (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332

    PubMed  CAS  Google Scholar 

  • Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7):1749–1758

    PubMed  CAS  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    PubMed  CAS  Google Scholar 

  • Lasiene J, Shupe L, Perlmutter S, Horner P (2008) No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. J Neurosci 28:3887–3896

    PubMed  CAS  Google Scholar 

  • Li WW, Setzu A, Zhao C, Franklin RJM (2005) Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol 158:58–66

    PubMed  CAS  Google Scholar 

  • Li WW, Penderis J, Zhao C, Schumacher M, Franklin RJM (2006) Females remyelinate more efficiently than males following demyelination in the aged but not young adult CNS. Exp Neurol 202:250–254

    PubMed  CAS  Google Scholar 

  • Liebetanz D, Merkler D (2006) Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 202:217–224

    PubMed  CAS  Google Scholar 

  • Linington C, Engelhardt B, Kapocs G, Lassman H (1992) Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T cells and demyelinating antibody. J Neuroimmunol 40:219–224

    PubMed  CAS  Google Scholar 

  • Ludwin SK (1980) Chronic demyelination inhibits remyelination in the central nervous system. Lab Invest 43:382–387

    PubMed  CAS  Google Scholar 

  • Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345

    PubMed  CAS  Google Scholar 

  • Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1beta promotes repair of the CNS. J Neurosci 21:7046–7052

    PubMed  CAS  Google Scholar 

  • Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE (2003) Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23:7710–7718

    PubMed  CAS  Google Scholar 

  • Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, Matsushima GK (2004) Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 164:1673–1682

    PubMed  Google Scholar 

  • Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918

    PubMed  CAS  Google Scholar 

  • Merkler D, Ernsting T, Kerschensteiner M, Bruck W, Stadelmann C (2006) A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 129:1972–1983

    PubMed  Google Scholar 

  • Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751

    PubMed  CAS  Google Scholar 

  • Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH, Guo J, Zhang W, So KF, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX, Wu W (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13:1228–1233

    PubMed  CAS  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703

    PubMed  CAS  Google Scholar 

  • Moore CS, Milner R, Nishiyama A, Frausto RF, Serwanski DR, Pagarigan RR, Whitton JL, Miller RH, Crocker SJ (2011) Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. J Neurosci 31:6247–6254

    PubMed  CAS  Google Scholar 

  • Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC (2005) PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 19:171–182

    PubMed  CAS  Google Scholar 

  • Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11:4357–4366

    PubMed  CAS  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    PubMed  CAS  Google Scholar 

  • Niehaus A, Shi J, Grzenkowski M, Diers-Fenger M, Archelos J, Hartung HP, Toyka K, Bruck W, Trotter J (2000) Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann Neurol 48:362–371

    PubMed  CAS  Google Scholar 

  • Njenga MK, Murray PD, McGavern D, Lin X, Drescher KM, Rodriguez M (1999) Absence of spontaneous central nervous system remyelination in class II-deficient mice infected with Theiler’s virus. J Neuropathol Exp Neurol 58:78–91

    PubMed  CAS  Google Scholar 

  • O’Leary MT, Hinks GL, Charlton HM, Franklin RJM (2002) Increasing local levels of IGF-I mRNA expression using adenoviral vectors does not alter oligodendrocyte remyelination in the CNS of aged rats. Mol Cell Neurosci 19:32–42

    PubMed  Google Scholar 

  • Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287

    PubMed  CAS  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Penderis J, Shields SA, Franklin RJM (2003a) Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat CNS. Brain 126:1382–1391

    PubMed  Google Scholar 

  • Penderis J, Woodruff RH, Lakatos A, Li WW, Dunning MD, Zhao C, Marchionni M, Franklin RJM (2003b) Increasing local levels of neuregulin (glial growth factor-2) by direct infusion into areas of demyelination does not alter remyelination in the rat CNS. Eur J Neurosci 18:2253–2264

    PubMed  Google Scholar 

  • Piaton G, Williams A, Seilhean D, Lubetzki C (2009) Remyelination in multiple sclerosis. Prog Brain Res 175:453–464

    PubMed  CAS  Google Scholar 

  • Piaton G, Aigrot MS, Williams A, Moyon S, Tepavcevic V, Moutkine I, Gras J, Matho KS, Schmitt A, Soellner H, Huber AB, Ravassard P, Lubetzki C (2011) Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134:1156–1167

    PubMed  Google Scholar 

  • Plant SR, Iocca HA, Wang Y, Thrash JC, O’Connor BP, Arnett HA, Fu YX, Carson MJ, Ting JP (2007) Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein. J Neurosci 27:7429–7437

    PubMed  CAS  Google Scholar 

  • Pohl HB, Porcheri C, Mueggler T, Bachmann LC, Martino G, Riethmacher D, Franklin RJ, Rudin M, Suter U (2011) Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci 31:1069–1080

    PubMed  CAS  Google Scholar 

  • Prayoonwiwat N, Rodriguez M (1993) The potential for oligodendrocyte proliferation during demyelinating disease. J Neuropathol Exp Neurol 52:55–63

    PubMed  CAS  Google Scholar 

  • Rhodes KE, Raivich G, Fawcett JW (2006) The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140:87–100

    PubMed  CAS  Google Scholar 

  • Richardson WD, Young KM, Tripathi RB, McKenzie I (2011) NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70:661–673

    PubMed  CAS  Google Scholar 

  • Setzu A, Lathia JD, Zhao C, Wells KA, Rao M, ffrench-Constant C, Franklin RJM (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297–303

    PubMed  Google Scholar 

  • Shen S, Sandoval J, Swiss V, Li J, Dupree J, Franklin RJM, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors: a critical determinant of remyelination efficiency. Nat Neurosci 11:1024–1034

    PubMed  CAS  Google Scholar 

  • Sim FJ, Zhao C, Li WW, Lakatos A, Franklin RJM (2002a) Expression of the POU domain transcription factors SCIP/Oct-6 and Brn-2 is associated with Schwann cell but not oligodendrocyte remyelination of the CNS. Mol Cell Neurosci 20:669–682

    PubMed  CAS  Google Scholar 

  • Sim FJ, Zhao C, Penderis J, Franklin RJM (2002b) The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci 22:2451–2459

    PubMed  CAS  Google Scholar 

  • Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci USA 107:11555–11560

    PubMed  CAS  Google Scholar 

  • Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280:395–396

    PubMed  CAS  Google Scholar 

  • Snyder DH, Valsamis MP, Stone SH, Raine CS (1975) Progressive demyelination and reparative phenomena in chronic experimental allergic encephalomyelitis. J Neuropathol Exp Neurol 34:209–221

    PubMed  CAS  Google Scholar 

  • Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJM (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13:329–339

    PubMed  Google Scholar 

  • Stidworthy MF, Genoud S, Li WW, Leone DP, Mantei N, Suter U, Franklin RJM (2004) Notch1 and Jagged1 are expressed after CNS demyelination but are not a major rate-determining factor during remyelination. Brain 127:1928–1941

    PubMed  Google Scholar 

  • Syed YA, Hand E, Mobius W, Zhao C, Hofer M, Nave KA, Kotter MR (2011) Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 31:3719–3728

    PubMed  CAS  Google Scholar 

  • Tang DG, Tokumoto YM, Raff MC (2000) Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. J Cell Biol 148:971–984

    PubMed  CAS  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    PubMed  CAS  Google Scholar 

  • Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 30:16383–16390

    PubMed  CAS  Google Scholar 

  • Vela JM, Molina-Holgado E, Arevalo-Martin A, Almazan G, Guaza C (2002) Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20:489–502

    PubMed  CAS  Google Scholar 

  • Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75

    PubMed  Google Scholar 

  • Warrington AE, Asakura K, Bieber AJ, Ciric B, Van KV, Kaveri SV, Kyle RA, Pease LR, Rodriguez M (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci USA 97:6820–6825

    PubMed  CAS  Google Scholar 

  • Watanabe M, Hadzic T, Nishiyama A (2004) Transient upregulation of Nkx2.2 expression in oligodendrocyte lineage cells during remyelination. Glia 46:311–322

    PubMed  Google Scholar 

  • Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Mobius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27:7717–7730

    PubMed  CAS  Google Scholar 

  • Williams A, Piaton G, Aigrot MS, Belhadi A, Theaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C (2007a) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565

    PubMed  Google Scholar 

  • Williams A, Piaton G, Lubetzki C (2007b) Astrocytes – friends or foes in multiple sclerosis? Glia 55:1300–1312

    PubMed  Google Scholar 

  • Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609

    PubMed  CAS  Google Scholar 

  • Wolswijk G (2002) Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125:338–349

    PubMed  Google Scholar 

  • Wolswijk G, Noble M (1989) Identification of an adult-specific glial progenitor cell. Development 105:387–400

    PubMed  CAS  Google Scholar 

  • Wolswijk G, Noble M (1992) Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitors to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J Cell Biol 118:889–900

    PubMed  CAS  Google Scholar 

  • Woodruff RH, Fruttiger M, Richardson WD, Franklin RJM (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25:252–262

    PubMed  CAS  Google Scholar 

  • Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25:1354–1365

    PubMed  CAS  Google Scholar 

  • Yao DL, Liu X, Hudson LD, Webster HD (1995) Insulin-like growth factor I treatment reduces demyelination and up-regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 92:6190–6194

    PubMed  CAS  Google Scholar 

  • Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829–838

    PubMed  CAS  Google Scholar 

  • Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590

    PubMed  CAS  Google Scholar 

  • Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, Ge C, Lu QR, Rowitch DH, Raine CS, Brosnan CF, John GR (2009) Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA 106(45):19162–19167

    PubMed  CAS  Google Scholar 

  • Zhao C, Li WW, Franklin RJM (2006) Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiol Aging 27:1298–1307

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. M. Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franklin, R.J.M., Zhao, C., Lubetzki, C., ffrench-Constant, C. (2013). Endogenous Remyelination in the CNS. In: Duncan, I., Franklin, R. (eds) Myelin Repair and Neuroprotection in Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2218-1_4

Download citation

Publish with us

Policies and ethics