Skip to main content

Pharmaceutical Nanotechnology: Overcoming Drug Delivery Challenges in Contemporary Medicine

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1815 Accesses

Abstract

This review discusses the challenges associated with drug delivery and benefits of employing nanosystems in the delivery of small and macromolecular drugs. Poor biopharmaceutical characteristics of drug and biological barriers in the body affect the drug molecules reaching the intended disease site. For instance, solubility and permeability of a drug molecule affect its transport through the cellular membranes, while their stability in the biological environment dictates residence time and efficacy. Nanomedicine, an evaluation of nanotechnology, ferry the payload safely and effectively through several anatomical and physiological barriers to the target site. Besides, nanomedicine could be engineered to provide compound effect through ligand-mediated targeting and image guided drug delivery at disease site. With illustrative examples from scientific literature, the versatility of different nanosystems and their utility in disease therapy spanning from preclinical development to approved products is emphasized. Specific issues in drug approval including quality-by-design and regulatory aspects are discussed. Based on the advances in drug delivery and nanomaterial synthesis, there is a great future for nanomedicine in diagnosis and treatment of several complex diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD (2008) siRNA, miRNA, and shRNA: in vivo applications. J Dent Res 87:992–1003

    CAS  Google Scholar 

  2. Baumann K (2014) Gene expression: RNAi as a global transcriptional activator. Nat Rev Mol Cell Biol 15(5):298–299

    Google Scholar 

  3. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    CAS  Google Scholar 

  4. Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172

    Google Scholar 

  5. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67

    CAS  Google Scholar 

  6. Stegemann S, Leveiller F, Franchi D, de Jong H, Linden H (2007) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31:249–261

    CAS  Google Scholar 

  7. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    CAS  Google Scholar 

  8. Merisko-Liversidge EM, Liversidge GG (2008) Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 36:43–48

    CAS  Google Scholar 

  9. Aungst BJ (1999) P-glycoprotein, secretory transport, and other barriers to the oral delivery of anti-HIV drugs. Adv Drug Deliv Rev 39:105–116

    CAS  Google Scholar 

  10. Goldberg M, Gomez-Orellana I (2003) Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2:289–295

    CAS  Google Scholar 

  11. Salama N, Eddington N, Fasano A (2006) Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 58:15–28

    CAS  Google Scholar 

  12. Florence AT (2005) Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today 2:75–81

    CAS  Google Scholar 

  13. Yang SC, Benita S (2000) Enhanced absorption and drug targeting by positively charged submicron emulsions. Drug Dev Res 50:476–486

    CAS  Google Scholar 

  14. Artursson P, Ungell AL, Lofroth JE (1993) Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res 10:1123–1129

    CAS  Google Scholar 

  15. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    CAS  Google Scholar 

  16. Lindup WE, Orme MC (1981) Clinical pharmacology: plasma protein binding of drugs. Br Med J (Clin Res Ed) 282:212–214

    CAS  Google Scholar 

  17. Shen DD, Kunze KL, Thummel KE (1997) Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev 27:99–127

    Google Scholar 

  18. Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7:E61–E77

    CAS  Google Scholar 

  19. Ejendal KF, Hrycyna CA (2002) Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 3:503–511

    CAS  Google Scholar 

  20. Ganta S, Deshpande D, Korde A, Amiji M (2010) A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 27:260–273

    CAS  Google Scholar 

  21. Ganta S, Devalapally H, Amiji M (2010) Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J Pharm Sci 99:4630–4641

    CAS  Google Scholar 

  22. Ganta S, Sharma P, Paxton JW, Baguley BC, Garg S (2010) Pharmacokinetics and pharmacodynamics of chlorambucil delivered in long-circulating nanoemulsion. J Drug Target 18:125–133

    CAS  Google Scholar 

  23. Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699

    CAS  Google Scholar 

  24. Zhang Y, Benet LZ (2001) The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 40:159–168

    CAS  Google Scholar 

  25. Demeule M, Regina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, Moghrabi A, Beliveau R (2002) Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vascul Pharmacol 38:339–348

    CAS  Google Scholar 

  26. Loscher W, Potschka H (2005) Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98

    Google Scholar 

  27. Malingre MM, Beijnen JH, Schellens JH (2001) Oral delivery of taxanes. Invest New Drugs 19:155–162

    CAS  Google Scholar 

  28. Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    CAS  Google Scholar 

  29. Yang S, Gursoy RN, Lambert G, Benita S (2004) Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of P-glycoprotein inhibitors. Pharm Res 21:261–270

    CAS  Google Scholar 

  30. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    CAS  Google Scholar 

  31. Zhang W, Tan TM, Lim LY (2007) Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos 35:110–115

    Google Scholar 

  32. Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12:54–61

    CAS  Google Scholar 

  33. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    CAS  Google Scholar 

  34. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    CAS  Google Scholar 

  35. Berns A, Pandolfi PP (2014) Tumor microenvironment revisited. EMBO Rep 15(5):458–459

    CAS  Google Scholar 

  36. Mittal K, Ebos J, Rini B (2014) Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Oncol 41(2):235–251

    CAS  Google Scholar 

  37. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Google Scholar 

  38. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503

    CAS  Google Scholar 

  39. Olive PL, Durand RE (1994) Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev 13:121–138

    CAS  Google Scholar 

  40. Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW, Frei E 3rd (1990) Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247:1457–1461

    CAS  Google Scholar 

  41. Davis SS (1997) Biomedical applications of nanotechnology–implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224

    CAS  Google Scholar 

  42. Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    CAS  Google Scholar 

  43. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    CAS  Google Scholar 

  44. Tiwari SB, Amiji MM (2006) Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J Nanosci Nanotechnol 6:3215–3221

    CAS  Google Scholar 

  45. Vyas TK, Shahiwala A, Amiji MM (2008) Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347:93–101

    CAS  Google Scholar 

  46. Edmond J (2001) Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 16:181–193, discussion 215–121

    CAS  Google Scholar 

  47. Roerdink F, Regts J, Van Leeuwen B, Scherphof G (1984) Intrahepatic uptake and processing of intravenously injected small unilamellar phospholipid vesicles in rats. Biochim Biophys Acta 770:195–202

    CAS  Google Scholar 

  48. Turner N, Wright N (1992) The response to injury. Oxf Textb Pathol 351–390

    Google Scholar 

  49. Jain RK (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 81:570–576

    CAS  Google Scholar 

  50. Braet F, De Zanger R, Baekeland M, Crabbe E, Van Der Smissen P, Wisse E (1995) Structure and dynamics of the fenestrae-associated cytoskeleton of rat liver sinusoidal endothelial cells. Hepatology 21:180–189

    CAS  Google Scholar 

  51. Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, Buijs WC, Bakker H, van der Meer JW, Corstens FH (2000) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41:622–630

    CAS  Google Scholar 

  52. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    CAS  Google Scholar 

  53. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  54. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  Google Scholar 

  55. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    CAS  Google Scholar 

  56. Marcucci F, Lefoulon F (2004) Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today 9:219–228

    CAS  Google Scholar 

  57. Rihova B (1998) Receptor-mediated targeted drug or toxin delivery. Adv Drug Deliv Rev 29:273–289

    CAS  Google Scholar 

  58. Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    CAS  Google Scholar 

  59. Kichler A, Leborgne C, Coeytaux E, Danos O (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 3:135–144

    CAS  Google Scholar 

  60. Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56:1055–1058

    CAS  Google Scholar 

  61. Oba M, Aoyagi K, Miyata K, Matsumoto Y, Itaka K, Nishiyama N, Yamasaki Y, Koyama H, Kataoka K (2008) Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm 5:1080–1092

    CAS  Google Scholar 

  62. Gupta B, Torchilin VP (2006) Transactivating transcriptional activator-mediated drug delivery. Expert Opin Drug Deliv 3:177–190

    CAS  Google Scholar 

  63. Snyder EL, Dowdy SF (2001) Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr Opin Mol Ther 3:147–152

    CAS  Google Scholar 

  64. Weissig V, Torchilin VP (2001) Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 49:127–149

    CAS  Google Scholar 

  65. Weissig V, Torchilin VP (2001) Drug and DNA delivery to mitochondria. Adv Drug Deliv Rev 49:1–2

    CAS  Google Scholar 

  66. Kushwaha SKS, Keshari RK, Rai A (2011) Advances in nasal trans-mucosal drug delivery. J Appl Pharm Sci 1:21–28

    Google Scholar 

  67. Mathias NR, Hussain MA (2010) Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci 99:1–20

    CAS  Google Scholar 

  68. Jatzkewitz H (1955) An ein kolloidales blutplasmaersatzmittel (polyvinylpyrrolidon) gebundenes peptamin (glycyl l-leucyl-mezcalin) als neuartige depotform fur biologisch aktive primare amine (mezcalin). Z Naturforsch B 10:27–31

    Google Scholar 

  69. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    CAS  Google Scholar 

  70. Gregoriadis G (1973) Drug entrapment in liposomes. FEBS Lett 36:292–296

    CAS  Google Scholar 

  71. Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498–503

    CAS  Google Scholar 

  72. Kramer PA (1974) Letter: Albumin microspheres as vehicles for achieving specificity in drug delivery. J Pharm Sci 63:1646–1647

    CAS  Google Scholar 

  73. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Polym Sym 51:135–153

    CAS  Google Scholar 

  74. Kreuter J (2007) Nanoparticles–a historical perspective. Int J Pharm 331:1–10

    CAS  Google Scholar 

  75. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    CAS  Google Scholar 

  76. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250

    CAS  Google Scholar 

  77. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    CAS  Google Scholar 

  78. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    CAS  Google Scholar 

  79. Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1146:157–168

    CAS  Google Scholar 

  80. Torchilin VPT (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155

    CAS  Google Scholar 

  81. Whiteman KR, Subr V, Ulbrich K, Torchilin VP (2001) Poly(Hpma)-coated liposomes demonstrate prolonged circulation in mice. J Liposome Res 11:153–164

    CAS  Google Scholar 

  82. Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, Michailova EV, Shtilman MI (2001) Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22:3035–3044

    CAS  Google Scholar 

  83. Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2001) Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J Control Release 75:83–91

    CAS  Google Scholar 

  84. Metselaar JM, Bruin P, de Boer LW, de Vringer T, Snel C, Oussoren C, Wauben MH, Crommelin DJ, Storm G, Hennink WE (2003) A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem 14:1156–1164

    CAS  Google Scholar 

  85. Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP (2002) Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 240:95–102

    CAS  Google Scholar 

  86. Allen TM, Sapra P, Moase E, Moreira J, Iden D (2002) Adventures in targeting. J Liposome Res 12:5–12

    CAS  Google Scholar 

  87. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    CAS  Google Scholar 

  88. Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651

    CAS  Google Scholar 

  89. Berry G, Billingham M, Alderman E, Richardson P, Torti F, Lum B, Patek A, Martin FJ (1998) The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol 9:711–716

    CAS  Google Scholar 

  90. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Du Mond C, Mamelok RD, Henry DH (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16:2445–2451

    CAS  Google Scholar 

  91. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    CAS  Google Scholar 

  92. Hamilton A, Biganzoli L, Coleman R, Mauriac L, Hennebert P, Awada A, Nooij M, Beex L, Piccart M, Van Hoorebeeck I, Bruning P, de Valeriola D (2002) EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene glycol liposomal doxorubicin (Caelyx, Doxil) at a 6-week interval in patients with metastatic breast cancer. European Organization for Research and Treatment of Cancer. Ann Oncol 13:910–918

    CAS  Google Scholar 

  93. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    CAS  Google Scholar 

  94. Northfelt DW, Dezube BJ, Thommes JA, Levine R, Von Roenn JH, Dosik GM, Rios A, Krown SE, DuMond C, Mamelok RD (1997) Efficacy of pegylated-liposomal doxorubicin in the treatment of AIDS-related Kaposi’s sarcoma after failure of standard chemotherapy. J Clin Oncol 15:653–659

    CAS  Google Scholar 

  95. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Google Scholar 

  96. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M (2007) Formulation development and optimization using nanoemulsion technique: a technical note, AAPS PharmSciTech 8, Article 28

    Google Scholar 

  97. Anton N, Saulnier P, Beduneau A, Benoit JP (2007) Salting-out effect induced by temperature cycling on a water/nonionic surfactant/oil system. J Phys Chem B 111:3651–3657

    CAS  Google Scholar 

  98. Talekar M, Ganta S, Singh A, Amiji M, Kendall J, Denny WA, Garg S (2012) Phosphatidylinositol 3-kinase inhibitor (PIK75) containing surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells. Pharm Res 29:2874–2886

    CAS  Google Scholar 

  99. Talekar M, Kendall J, Denny W, Jamieson S, Garg S (2012) Development and evaluation of PIK75 nanosuspension, a phosphatidylinositol-3-kinase inhibitor. Eur J Pharm Sci 47:824–833

    CAS  Google Scholar 

  100. Cockshott ID (1985) Propofol (‘Diprivan’) pharmacokinetics and metabolism–an overview. Postgrad Med J 61(Suppl 3):45–50

    CAS  Google Scholar 

  101. Langley MS, Heel RC (1988) Propofol. A review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anaesthetic. Drugs 35:334–372

    CAS  Google Scholar 

  102. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    CAS  Google Scholar 

  103. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 277:39–61

    CAS  Google Scholar 

  104. Abe S, Otsuki M (2002) Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma. Curr Med Chem Anticancer Agents 2:715–726

    CAS  Google Scholar 

  105. Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55:1293–1302

    CAS  Google Scholar 

  106. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    CAS  Google Scholar 

  107. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    CAS  Google Scholar 

  108. Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3:488–499

    CAS  Google Scholar 

  109. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    CAS  Google Scholar 

  110. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    CAS  Google Scholar 

  111. Gaber NN, Darwis Y, Peh KK, Tan YT (2006) Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol 6:3095–3101

    CAS  Google Scholar 

  112. Dong H, Li Y, Cai S, Zhuo R, Zhang X, Liu L (2008) A facile one-pot construction of supramolecular polymer micelles from alpha-cyclodextrin and poly(epsilon-caprolactone). Angew Chem Int Ed Engl 47:5573–5576

    CAS  Google Scholar 

  113. Satoh T, Higuchi Y, Kawakami S, Hashida M, Kagechika H, Shudo K, Yokoyama M (2009) Encapsulation of the synthetic retinoids Am80 and LE540 into polymeric micelles and the retinoids’ release control. J Control Release 136:187–195

    CAS  Google Scholar 

  114. Wei X, Gong C, Shi S, Fu S, Men K, Zeng S, Zheng X, Gou M, Chen L, Qiu L, Qian Z (2009) Self-assembled honokiol-loaded micelles based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Int J Pharm 369:170–175

    CAS  Google Scholar 

  115. Wang Y, Li Y, Wang Q, Fang X (2008) Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with pluronic P105/poly(caprolactone) copolymers. Pharmazie 63:446–452

    CAS  Google Scholar 

  116. Opanasopit P, Ngawhirunpat T, Rojanarata T, Choochottiros C, Chirachanchai S (2007) Camptothecin-incorporating N-phthaloylchitosan-g-mPEG self-assembly micellar system: effect of degree of deacetylation. Colloids Surf B Biointerfaces 60:117–124

    CAS  Google Scholar 

  117. Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G, Brewer J, Campbell S, Corrie P, Rowinsky EK, Ranson M (2011) A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs 29:1029–1037

    CAS  Google Scholar 

  118. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    CAS  Google Scholar 

  119. Cheng Y, Xu Z, Ma M, Xu T (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97:123–143

    CAS  Google Scholar 

  120. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    CAS  Google Scholar 

  121. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    CAS  Google Scholar 

  122. El-Sayed M, Ginski M, Rhodes C, Ghandehari H (2002) Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release 81:355–365

    CAS  Google Scholar 

  123. Yoo H, Juliano RL (2000) Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 28:4225–4231

    CAS  Google Scholar 

  124. Gurdag S, Khandare J, Stapels S, Matherly LH, Kannan RM (2006) Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem 17:275–283

    CAS  Google Scholar 

  125. Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Frechet JM, Dy EE, Szoka FC (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A 103:16649–16654

    CAS  Google Scholar 

  126. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, Oberlies NH, Manikumar G, Wani MC, Grinstaff MW (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66:11913–11921

    CAS  Google Scholar 

  127. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    CAS  Google Scholar 

  128. Abeylath SC, Ganta S, Iyer AK, Amiji M (2011) Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res 44:1009–1017

    CAS  Google Scholar 

  129. Yatvin MB, Kreutz W, Horwitz BA, Shinitzky M (1980) pH-sensitive liposomes: possible clinical implications. Science 210:1253–1255

    CAS  Google Scholar 

  130. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    CAS  Google Scholar 

  131. Devalapally H, Duan Z, Seiden MV, Amiji MM (2007) Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 121:1830–1838

    CAS  Google Scholar 

  132. Devalapally H, Shenoy D, Little S, Langer R, Amiji M (2007) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 59:477–484

    CAS  Google Scholar 

  133. Shenoy D, Little S, Langer R, Amiji M (2005) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2:357–366

    CAS  Google Scholar 

  134. Stayton PS, El-Sayed ME, Murthy N, Bulmus V, Lackey C, Cheung C, Hoffman AS (2005) ‘Smart’ delivery systems for biomolecular therapeutics. Orthod Craniofac Res 8:219–225

    CAS  Google Scholar 

  135. Na K, Lee ES, Bae YH (2003) Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Control Release 87:3–13

    CAS  Google Scholar 

  136. Kamada H, Tsutsumi Y, Yoshioka Y, Yamamoto Y, Kodaira H, Tsunoda S, Okamoto T, Mukai Y, Shibata H, Nakagawa S, Mayumi T (2004) Design of a pH-sensitive polymeric carrier for drug release and its application in cancer therapy. Clin Cancer Res 10:2545–2550

    CAS  Google Scholar 

  137. Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M (2007) Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J Control Release 118:262–270

    CAS  Google Scholar 

  138. Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B (2004) Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target 12:477–489

    CAS  Google Scholar 

  139. Ulbrich K, Subr V, Strohalm J, Plocova D, Jelinkova M, Rihova B (2000) Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J Control Release 64:63–79

    CAS  Google Scholar 

  140. Beyer U, Roth T, Schumacher P, Maier G, Unold A, Frahm AW, Fiebig HH, Unger C, Kratz F (1998) Synthesis and in vitro efficacy of transferrin conjugates of the anticancer drug chlorambucil. J Med Chem 41:2701–2708

    CAS  Google Scholar 

  141. Tomlinson R, Heller J, Brocchini S, Duncan R (2003) Polyacetal-doxorubicin conjugates designed for pH-dependent degradation. Bioconjug Chem 14:1096–1106

    CAS  Google Scholar 

  142. Wang CY, Huang L (1989) Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 28:9508–9514

    CAS  Google Scholar 

  143. Litzinger DC, Huang L (1992) Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim Biophys Acta 1113:201–227

    CAS  Google Scholar 

  144. Connor J, Huang L (1986) pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res 46:3431–3435

    CAS  Google Scholar 

  145. Couffin-Hoarau AC, Leroux JC (2004) Report on the use of poly(organophosphazenes) for the design of stimuli-responsive vesicles. Biomacromolecules 5:2082–2087

    CAS  Google Scholar 

  146. Ellens H, Bentz J, Szoka FC (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23:1532–1538

    CAS  Google Scholar 

  147. Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    CAS  Google Scholar 

  148. Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113

    CAS  Google Scholar 

  149. Leroux J, Roux E, Le Garrec D, Hong K, Drummond DC (2001) N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release 72:71–84

    CAS  Google Scholar 

  150. Shen H, Eisenberg A (2000) Control of architecture in block-copolymer vesicles we thank the petroleum research fund, administered by the American Chemical Society, for the support of this work. Angew Chem Int Ed Engl 39:3310–3312

    CAS  Google Scholar 

  151. Ihre HR, Padilla De Jesus OL, Szoka FC Jr, Frechet JM (2002) Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 13:443–452

    CAS  Google Scholar 

  152. Gillies ER, Jonsson TB, Frechet JM (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126:11936–11943

    CAS  Google Scholar 

  153. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39

    CAS  Google Scholar 

  154. Jin H, Kang KA (2007) Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Adv Exp Med Biol 599:45–52

    CAS  Google Scholar 

  155. Ahmed M, Lukyanov AN, Torchilin V, Tournier H, Schneider AN, Goldberg SN (2005) Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol 16:1365–1371

    Google Scholar 

  156. Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A (2001) Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 74:213–224

    CAS  Google Scholar 

  157. Chung JE, Yokoyama M, Okano T (2000) Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Control Release 65:93–103

    CAS  Google Scholar 

  158. Bae KH, Choi SH, Park SY, Lee Y, Park TG (2006) Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir 22:6380–6384

    CAS  Google Scholar 

  159. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202:1290–1293

    CAS  Google Scholar 

  160. Kono K (2001) Thermosensitive polymer-modified liposomes. Adv Drug Deliv Rev 53:307–319

    CAS  Google Scholar 

  161. Kono K, Nakai R, Morimoto K, Takagishi T (1999) Thermosensitive polymer-modified liposomes that release contents around physiological temperature. Biochim Biophys Acta 1416:239–250

    CAS  Google Scholar 

  162. Kono K, Yoshino K, Takagishi T (2002) Effect of poly(ethylene glycol) grafts on temperature-sensitivity of thermosensitive polymer-modified liposomes. J Control Release 80:321–332

    CAS  Google Scholar 

  163. Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215

    CAS  Google Scholar 

  164. Collins DS, Unanue ER, Harding CV (1991) Reduction of disulfide bonds within lysosomes is a key step in antigen processing. J Immunol 147:4054–4059

    CAS  Google Scholar 

  165. Cavallaro G, Campisi M, Licciardi M, Ogris M, Giammona G (2006) Reversibly stable thiopolyplexes for intracellular delivery of genes. J Control Release 115:322–334

    CAS  Google Scholar 

  166. Kommareddy S, Amiji M (2005) Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem 16:1423–1432

    CAS  Google Scholar 

  167. Kommareddy S, Amiji M (2007) Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine 3:32–42

    CAS  Google Scholar 

  168. Carlisle RC, Etrych T, Briggs SS, Preece JA, Ulbrich K, Seymour LW (2004) Polymer-coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction. J Gene Med 6:337–344

    CAS  Google Scholar 

  169. Neu M, Germershaus O, Mao S, Voigt KH, Behe M, Kissel T (2007) Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice. J Control Release 118:370–380

    CAS  Google Scholar 

  170. Wang Y, Chen P, Shen J (2006) The development and characterization of a glutathione-sensitive cross-linked polyethylenimine gene vector. Biomaterials 27:5292–5298

    CAS  Google Scholar 

  171. Schmitz T, Bravo-Osuna I, Vauthier C, Ponchel G, Loretz B, Bernkop-Schnurch A (2007) Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system. Biomaterials 28:524–531

    CAS  Google Scholar 

  172. Niculescu-Duvaz I (2000) Technology evaluation: gemtuzumab ozogamicin, Celltech group. Curr Opin Mol Ther 2:691–696

    CAS  Google Scholar 

  173. West KR, Otto S (2005) Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol 2:123–160

    CAS  Google Scholar 

  174. Huang Z, Li W, MacKay JA, Szoka FC Jr (2005) Thiocholesterol-based lipids for ordered assembly of bioresponsive gene carriers. Mol Ther 11:409–417

    CAS  Google Scholar 

  175. Gabizon AA, Tzemach D, Horowitz AT, Shmeeda H, Yeh J, Zalipsky S (2006) Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res 12:1913–1920

    CAS  Google Scholar 

  176. Allen TM (1994) Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 15:215–220

    CAS  Google Scholar 

  177. Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5–29

    CAS  Google Scholar 

  178. Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119

    Google Scholar 

  179. Zalipsky S (1995) Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem 6:150–165

    CAS  Google Scholar 

  180. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    CAS  Google Scholar 

  181. Muller M, Voros J, Csucs G, Walter E, Danuser G, Merkle HP, Spencer ND, Textor M (2003) Surface modification of PLGA microspheres. J Biomed Mater Res A 66:55–61

    CAS  Google Scholar 

  182. Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166

    CAS  Google Scholar 

  183. de Sousa Delgado A, Leonard M, Dellacherie E (2000) Surface modification of polystyrene nanoparticles using dextrans and dextran-POE copolymers: polymer adsorption and colloidal characterization. J Biomater Sci Polym Ed 11:1395–1410

    Google Scholar 

  184. Kenworthy AK, Hristova K, Needham D, McIntosh TJ (1995) Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J 68:1921–1936

    CAS  Google Scholar 

  185. Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA, Gamble RC, Baldeschwieler JD (1983) Liposomal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. Science 220:502–505

    CAS  Google Scholar 

  186. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    CAS  Google Scholar 

  187. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    CAS  Google Scholar 

  188. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    CAS  Google Scholar 

  189. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    CAS  Google Scholar 

  190. Newman SP, Wilding IR (1999) Imaging techniques for assessing drug delivery in man. Pharm Sci Technol Today 2:181–189

    CAS  Google Scholar 

  191. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    CAS  Google Scholar 

  192. Frullano L, Meade TJ (2007) Multimodal MRI contrast agents. J Biol Inorg Chem 12:939–949

    CAS  Google Scholar 

  193. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  Google Scholar 

  194. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A 105:5844–5849

    CAS  Google Scholar 

  195. Desai A, Vyas T, Amiji M (2008) Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci 97:2745–2756

    CAS  Google Scholar 

  196. Ganta S, Paxton JW, Baguley BC, Garg S (2009) Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm 367:179–186

    CAS  Google Scholar 

  197. Misra R, Sahoo SK (2011) Coformulation of doxorubicin and curcumin in poly(D, L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm 8:852–866

    CAS  Google Scholar 

  198. Zimmermann GR, Lehar J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42

    CAS  Google Scholar 

  199. Batist G, Gelmon KA, Chi KN, Miller WH Jr, Chia SK, Mayer LD, Swenson CE, Janoff AS, Louie AC (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15:692–700

    CAS  Google Scholar 

  200. Feldman EJ, Lancet JE, Kolitz JE, Ritchie EK, Roboz GJ, List AF, Allen SL, Asatiani E, Mayer LD, Swenson C, Louie AC (2011) First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol 29:979–985

    CAS  Google Scholar 

  201. FDA (2013) Guidance compliance & regulatory information. http://www.fda.gov/Drugs/

  202. ICH (2013) The International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. http://www.ich.org/

  203. FDA (2002) Guidance for industry, liposome drug products, chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation, draft guidance

    Google Scholar 

  204. Tyner K (2011) Nanomedicines and the regulatory path, roundtable presentation. Center of Innovation for Nanobiotechnology, Research Triangle Park

    Google Scholar 

  205. European Medicines Agency (2010) European Medicines Agency holds first scientific workshop on nanomedicines. EMA/559074/2010

    Google Scholar 

  206. Prescott C (2010) Regenerative nanomedicines: an emerging investment prospective? J R Soc Interface 7(Suppl 6):S783–S787

    Google Scholar 

  207. FDA (2008) Q8(R1) pharmaceutical development revision 1. International Conference on Harmonisation (ICH) Q8 guideline

    Google Scholar 

  208. Nasr M (2006) Nasr M. FDA’s view on QbD. Industry guidance

    Google Scholar 

  209. FDA (2009) Guidance for Industry Q9 Quality Risk management. International Conference on Harmonisation (ICH) Q9 guideline; Q10 Pharmaceutical Quality System. International Conference on Harmonisation (ICH) Q10 guideline

    Google Scholar 

  210. Tebbey PW, Rink C (2009) Target product profile: a renaissance for its definition and use. J Med Mark 9:301

    Google Scholar 

  211. Vastag B (2011) Panel backs new NIH center devoted to translational medicine. Nat Med 17:5

    CAS  Google Scholar 

  212. DiMasi JA, Grabowski HG (2007) The cost of biopharmaceutical R&D: is biotech different? Managerial Decis Econ 28:469–479

    Google Scholar 

  213. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    CAS  Google Scholar 

  214. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ganta, S., Singh, A., Coleman, T.P., Williams, D., Amiji, M. (2014). Pharmaceutical Nanotechnology: Overcoming Drug Delivery Challenges in Contemporary Medicine. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_10

Download citation

Publish with us

Policies and ethics