Skip to main content

Nanohandling of Biomaterials

  • Chapter
  • First Online:
Nanorobotics

Abstract

Currently, there is an increasing interest in handling, understanding, and integrating biological systems important for biomedicine, process industry, pharmacy, and biomaterial research. Besides this interest, the demand for adequate, nondestructive, automatable, and fully controllable handling, manipulation, and characterization techniques increases as well. Thanks to the advancements in micro- and nanofabrication and in the robotics area, several approaches and techniques offer us the ability to set up robotic systems, which are able to handle biomaterials down to the nanoscale. In this chapter, some of the most applicable techniques for a robotic and automated use are shown, including advantages and disadvantages as well as current applications and the necessary biological backgrounds for the most common biomaterials a researcher will handle today. So the state of the art for the nanohandling of biomaterials, applicable in current robotic systems and possibly applicable in future robotic systems, is shown as well as our own work on this special field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts B et al (2002) Molecular biology of the cell. Taylor & Francis, New York

    Google Scholar 

  2. Layton BE et al (2005) Nanomanipulation and aggregation limitations of self-assembling structural proteins. Microelectron J 36:644–649

    Article  Google Scholar 

  3. Fahlbusch S, Mazerolle S, Breguet JM (2005) Nanomanipulation in a scanning electron microscope. J Mater Proc Technol 167:371–382

    Article  Google Scholar 

  4. Tai SSW, Tang XM (2001) Manipulating biological samples for environmental scanning electron microscopy observation. Scanning 23:267–272

    Article  Google Scholar 

  5. Mestres P, Pütz N, Laue M (2007) Consequences of tilting of biological specimens in wet mode ESEM imaging. Microsc Microanal 13:244–245

    Article  Google Scholar 

  6. Stokes D (2003) Low vacuum & ESEM imaging of biological specimens. Microsc Microanal 9:190–191

    Article  Google Scholar 

  7. Muscariello L, Rosso F, Marino G (2005) A critical overview of ESEM applications in the biological field. J Cell Physiol 205:328–334

    Article  Google Scholar 

  8. Quate G, Gerber CF, Binnig C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  9. Castillo J, Dimaki M, Svendsen WE (2009) Manipulation of biological samples using micro and nano techniques. Integr Biol 1:30–42

    Article  Google Scholar 

  10. Lal R, John SA (1994) Biological applications of atomic force microscopy. Am J Physiol Cell Physiol 266:c1–c21

    Google Scholar 

  11. Sitti M (2007) Microscale and nanoscale robotics systems [grand challenges of robotics]. IEEE Robot Autom Mag 14:53–60

    Article  Google Scholar 

  12. Rubio-Sierra J, Heckl W, Stark RW (2005) Nanomanipulation by atomic force microscopy. Adv Eng Mater 7:193–196

    Article  Google Scholar 

  13. Brufau J, Puig-Vidal M, López-Sánchez J (2005) Micron: small autonomous robot for cell manipulation applications. In: International conference on Robotics and Automation, Barcelona, Spain, 856–861

    Google Scholar 

  14. Ando T, Uchihashi T, Kodera N (2008) High-speed AFM and nano-visualization of biomolecular processes. Eur J Physiol 456:211–225

    Article  Google Scholar 

  15. Kuznetsov Y, Gershon PD, McPherson A (2008) Atomic force microscopy investigation of vaccinia virus structure. J Virol 82:7551–7566

    Article  Google Scholar 

  16. Laney DE, Garcia RA, Parsons SM, Hansma HG (1997) Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy. Biophys J 72:806–813

    Article  Google Scholar 

  17. Seidel R, Colombi Ciacchi L, Weigel M, Pompe W, Mertig M (2004) Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth. J Phys Chem B 108:10801–10811

    Article  Google Scholar 

  18. de Pablo PJ, Moreno-Herrero F, Colchero J (2000) Absence of dc-conductivity in λ-DNA. Phys Rev Lett 85:4992–4995

    Article  Google Scholar 

  19. Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE (2008) Single-molecule cut-and-paste surface assembly. Science 319:594–596

    Article  Google Scholar 

  20. Parra A, Casero E, Lorenzo E, Pariente F, Vázquez L (2007) Nanomechanical properties of globular proteins: lactate oxidase. Langmuir 27:2747–2754

    Article  Google Scholar 

  21. Stark RW, Rubio-Sierra J, Thalhammer S, Heckl W (2003) Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection. Eur Biophys J 32:33–39

    Google Scholar 

  22. Afrin R, Alam MT, Ikai A (2005) Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy. Protein Sci 14:1447–1457

    Article  Google Scholar 

  23. Schaap I, Carrasco C, de Pablo PJ, MacKintosh FC, Schmidt CF (2006) Elastic response, buckling, and instability of microtubules under radial indentation. Biophys J 91:1521–1531

    Article  Google Scholar 

  24. Abu-Lail NI, Camesano TA (2003) Polysaccharide properties probed with atomic force microscopy. J Microsc 212:217–238

    Article  MathSciNet  Google Scholar 

  25. Peng L et al (2004) Study on biological effect of la3+ on Escherichia coli by atomic force microscopy. J Inorg Biochem 98:68–72

    Article  Google Scholar 

  26. Ebner A et al (2005) Localization of single avidin-biotin interactions using simultaneous topography and molecular recognition imaging. Chem Phys Chem 6:897–900

    Article  Google Scholar 

  27. Oberleithner H et al (2004) Human endothelium: target for aldosterone. Hypertension 43: 952–956

    Article  Google Scholar 

  28. Ivanovska IL et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci 101:7600–7605

    Article  Google Scholar 

  29. Cohen H et al (2006) Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive afm. Faraday Discuss 131:367–376

    Article  Google Scholar 

  30. Wright WH, Sonek GJ, Berns MW (1993) Radiation trapping forces on microspheres with optical tweezers. Appl Phys Lett 63:715–717

    Article  Google Scholar 

  31. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94:4853–4860

    Article  Google Scholar 

  32. Wright WH, Sonek GJ, Tadir Y, Berns MW (1990) Laser trapping in cell biology. IEEE J Quantum Electron 26:2148–2157

    Article  Google Scholar 

  33. Barton JP, Alexander DR (1989) Fifth order corrected electromagnetic field components for a fundamental Gaussian beam. J Appl Phys 66:2800–2802

    Article  Google Scholar 

  34. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  Google Scholar 

  35. Ruiz I, Wang P, Schaffer C, Kleinfeld D, (2003) Optical trapping and ablation. Neurophysics laboratory final report PHYS 173/BGGN 266 Lab. Uiversity of California, San Diego, CA

    Google Scholar 

  36. Guck J et al (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 181:767–784

    Article  Google Scholar 

  37. Baumann CG, Smith SB, Bloomfield VA, Bustamante C (1997) Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci USA 94:6185–6190

    Article  Google Scholar 

  38. Yu Y (2003) Introduction to probing DNA with optical tweezers. Introduction to Biophysics - Term Paper

    Google Scholar 

  39. Arai Y, Yasuda R, Akashi K (1999) Tying a molecular knot with optical tweezers. Lett Nat 399:446–448

    Article  Google Scholar 

  40. Tai CH, Hsiung SK, Chen CY, Tsai ML, Lee GB (2007) Automatic microfluidic platform for cell separation and nucleus collection. Biomed Microdevices 9:533–545

    Article  Google Scholar 

  41. Yang J, Huang Y, Wang XB, Becker FF, Gascoyne PRC (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem 71:911–918

    Article  Google Scholar 

  42. An J, Lee J, Kim Y, Kim B, Lee S (2008) Analysis of cell separation efficiency in dielectrophoresis-activated cell sorter. In: 3rd International IEEE conference on nano/micro engineered and molecular systems, 965–969

    Google Scholar 

  43. Yang J, Huang Y, Wang XB, Becker FF, Gascoyne PRC (2000) Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys J 78:2680–2689

    Article  Google Scholar 

  44. Wang XB et al (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72:832–839

    Article  Google Scholar 

  45. Regtmeier J, Duong TT, Eichhorn R, Anselmetti D, Ros A (2007) Dielectrophoretic manipulation of DNA: separation and polarizability. Anal Chem 79:3925–3932

    Article  Google Scholar 

  46. Tuukkanen S, Kuzyk A, Toppari JJ (2007) Trapping of 27 bp-8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology 18:295204–295214

    Article  Google Scholar 

  47. Sun Y, Nelson BJ (2002) Biological cell injection using an autonomous microrobotic system. Int J Robot Res 21:861–868

    Article  Google Scholar 

  48. Mølhave K, Wich T, Kortschack A, Bøggild P (2006) Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17:2434–2441

    Article  Google Scholar 

  49. Carlson K, Andersen KN, Eichhorn V (2007) A carbon nanofibre scanning probe assembled using an electrothermal microgripper. Nanotechnology 18:345501–345508

    Article  Google Scholar 

  50. Sardan O et al (2007) Microgrippers: a case study for batch-compatible integration of MEMS with nanostructures. Nanotechnology 18:375501–375512

    Article  Google Scholar 

  51. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  52. Bøggild P, Hansen TM, Tanasa C, Grey F (2001) Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology 12:331–335

    Article  Google Scholar 

  53. Hashiguchi G, Goda T, Hosogi M (2003) DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal Chem 75:4347–4350

    Article  Google Scholar 

  54. Beyeler F, Neild A, Oberti S (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16:7–15

    Article  Google Scholar 

  55. Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14:857–863

    Article  Google Scholar 

  56. Kim K, Liu X, Zhang Y, Sun Y (2008) Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J Micromech Microeng 18:55013–55021

    Article  Google Scholar 

  57. Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectron Eng 84:1219–1222

    Article  Google Scholar 

  58. Blideran MM, Bertsche G, Henschel W, Kern DP (2006) A mechanically actuated silicon microgripper for handling micro- and nanoparticles. Microelectron Eng 83:1382–1385

    Article  Google Scholar 

  59. Sokolov I, Subba-Rao V, Luck LA (2006) Change in rigidity in the activated form of the glucose/galactose receptor from Escherichia coli: a phenomenon that will be key to the development of biosensors. Biophys J 90:1055–1063

    Article  Google Scholar 

  60. Blideran MM, Fleischer M, Henschel W (2006) Characterization and operation of a mechanically actuated silicon microgripper. J Vac Sci Technol B 24:3239–3243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Weigel-Jech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weigel-Jech, M., Fatikow, S. (2013). Nanohandling of Biomaterials. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics