Skip to main content

Respiration

  • Reference work entry
Neuroscience in the 21st Century
  • 1002 Accesses

Abstract

Respiratory rhythm is generated by a network of neurons located in the ventrolateral medulla. Neuronal interactions with several other respiratory nuclei located in the medulla and pons shape the final pattern of rhythmic drive that coordinates the activation of the rib cage and abdominal and upper airway musculature. Further, there is continuous feedback of afferent signals from mechanoreceptors in the lung, airways, and respiratory muscles that help shape the motor pattern. Feedback from chemoreceptors located peripherally and centrally adjusts the level of ventilation to match metabolic requirements and maintain homeostasis. The respiratory control system is dynamic and plastic, able to meet an enormous range of metabolic and behavioral demands. Despite its robustness, the neural control of breathing is compromised in certain developmental, state-dependent, genetic, and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

AMPA:

2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid

ATP:

Adenosine triphosphate

BötC:

Bötzinger complex

cAMP:

Cyclic adenosine monophosphate

CCHS:

Congenital central hypoventilation syndrome

CCK:

Cholecystokinin

CNS:

Central nervous system

cVRG:

Caudal division of ventral respiratory group

Dbx1:

Developing brain homeobox protein

DRG:

Dorsal respiratory group

GABA:

γ-aminobutyric acid

KF:

Kölliker-Fuse nucleus

LPBr:

Lateral parabrachial nucleus

LRt:

Lateral reticular nucleus

Mcp:

Medial cerebellar peduncle

MeCP2:

Methyl-CpG-binding protein 2

Mo5:

Motor nucleus of the trigeminal nerve

MPBr:

Medial parabrachial nucleus

NK1R:

Neurokinin 1 receptor

NTS:

Nucleus of the solitary tractus

OSA:

Obstructive sleep apnea

P cells:

Pump cells

PaCO2 :

Partial pressure of arterial carbon dioxide

PAO2 :

Partial pressure of alveolar oxygen

PaO2 :

Partial pressure of arterial oxygen

pFRG/RTN:

Parafacial respiratory group/retrotrapezoid nucleus complex

Pn:

Basilar pontine nuclei

preBötC:

Pre-Bötzinger complex

PRG:

Pontine respiratory group

RAR:

Rapidly adapting receptor

REM:

Rapid eye movements

Robo3:

Roundabout homolog 3

rVRG:

Rostral division of ventral respiratory group

SAR:

Slowly adapting receptor

scp:

Superior cerebellar peduncle

SIDS:

Sudden Infant Death Syndrome

SO:

Superior olive

Sol:

Solitary tract

SolC:

Commissural subdivision of the nucleus of the solitary tract

SolVL:

Ventrolateral subdivision of the nucleus of the solitary tract

sp5:

Spinal trigeminal tract

SubP:

Substance P

TASK:

Acid-sensitive two-pore domain K+

TRH:

Thyrotropin-releasing hormone

VE :

Minute ventilation

vlPons:

Ventrolateral pontine region

VRC:

Ventral respiratory column

Further Reading

  • Alheid GF, McCrimmon DR (2008) The chemical neuroanatomy of breathing. Respir Physiol Neurobiol 164:3–11

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Gautier H (1976) Interaction of pulmonary afferents and pneumotaxic centre in control of respiratory pattern in cats. J Neurophysiol 39:31–44

    PubMed  CAS  Google Scholar 

  • Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL (2001) Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4(9):927–930

    Article  PubMed  CAS  Google Scholar 

  • Greer JJ, Funk GD, Ballanyi K (2006) Preparing for the first breath: prenatal maturation of respiratory neural control. J Physiol 570(Pt 3):437–444

    PubMed  CAS  Google Scholar 

  • Guyenet PG, Stornetta RL, Bayliss DA (2010) Central respiratory chemoreception. J Comp Neurol 518:3883–3906

    Article  PubMed  CAS  Google Scholar 

  • Haji A et al (1998) NMDA receptor-mediated inspiratory off-switching in pneumotaxic-disconnected cats. Neurosci Res 32:323–331

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Coles SK, McCrimmon DR (1996) Respiratory neurons mediating the Breuer-Hering reflex prolongation of expiration in rat. J Neurosci 16(20):6526–6536

    PubMed  CAS  Google Scholar 

  • Horner RL (2009) Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity. Philos Trans R Soc Lond B Biol Sci 364(1529):2553–2564

    Article  PubMed  Google Scholar 

  • Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570:407–420

    PubMed  CAS  Google Scholar 

  • Loeschcke HH, Gertz KH (1958) Einfluβ des 02-Druckes in der Einatmungsluft auf die Atemtätigkeit des Menschen geprüft unter Konstanthaltung des alveolaren C02-Druckes. Pfleugers Archiv 267:460–477

    Article  Google Scholar 

  • Mitchell GS, Johnson SM (2003) Neuroplasticity in respiratory motor control. J Appl Physiol 94(1):358–374

    PubMed  CAS  Google Scholar 

  • Nielsen M, Smith H (1952) Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia. Acta Physiologica Scand 24:293–313

    Article  CAS  Google Scholar 

  • Nurse CA (2010) Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 95(6):657–667

    Article  PubMed  CAS  Google Scholar 

  • Oku Y et al (2007) Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla. J Physiol 585:175–186

    Article  PubMed  CAS  Google Scholar 

  • Ramirez JM, Tryba AK, Peña F (2004) Pacemaker neurons and neuronal networks: an integrative view. Curr Opin Neurobiol 14(6):665–674

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Abdala AP, Rybak IA, Paton JF (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 364:2577–2587

    Article  PubMed  Google Scholar 

  • Thoby-Brisson M et al (2005) Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 25:4307–4318

    Article  PubMed  CAS  Google Scholar 

  • Thoby-Brisson M, Karlén M, Wu N, Charnay P, Champagnat J, Fortin G (2009) Genetic identification of an embryonic parafacial oscillator coupling to the preBötzinger complex. Nat Neurosci 12:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • von Euler C (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Cherniack NS, Widdicombe JG (eds) Handbook of Physiology Section 3: The Respiratory System, Vol. II Control of Breathing, Part I, American Physiological Society, Bethesda, pp 1–68

    Google Scholar 

  • Wasserman K, Whipp BJ, Casaburi R (1986) Respiratory control during exercise. In: Handbook of Physiology, Section 3: The Respiratory System, Vol. II Control of Breathing. American Physiological Society, Bethesda, pp 595–619

    Google Scholar 

  • Waters KA, Gozal D (2003) Responses to hypoxia during early development. Respir Physiol Neurobiol 136:115–129

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Greer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Greer, J.J., Funk, G.D. (2013). Respiration. In: Pfaff, D.W. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1997-6_49

Download citation

Publish with us

Policies and ethics