Skip to main content

Digital Camera Image Formation: Introduction and Hardware

  • Chapter
  • First Online:
Digital Image Forensics

Abstract

A high-level overview of image formation in a digital camera is presented. The discussion includes optical and electronic hardware issues, highlighting the impact of hardware characteristics on the resulting images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams J, Parulski K, Spaulding K (1998) Color processing in digital cameras. IEEE Micro 18:20–30

    Article  Google Scholar 

  2. Bayer B (1976) Color imaging array. US Patent 3,971,065

    Google Scholar 

  3. Brostow GJ, Essa I (2001) Image-based motion blur for stop motion animation. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01, ACM, New York, pp 561–566 http://doi.acm.org/10.1145/383259.383325

  4. Chi MH (1998) Method of forming a new bipolar/CMOS pixel for high resolution imagers. US Patent 5,854,100

    Google Scholar 

  5. Four thirds standard. http://www.four-thirds.org/en/fourthirds/index.html

  6. Gaskill J (1978) Linear systems, Fourier transforms, and optics. Wiley, New York

    Google Scholar 

  7. Goodman J (1968) Introduction to Fourier optics. McGraw-Hill, San Francisco

    Google Scholar 

  8. Guidash RM (2003) Active pixel sensor with wired floating diffusions and shared amplifier. US Patent 6,657,665

    Google Scholar 

  9. Guidash RM, Lee PP (1999) Active pixel sensor with punch-through reset and cross-talk suppression. US Patent 5,872,371

    Google Scholar 

  10. Holst GC, Lomheim TS (2007) CMOS/CCD sensors and camera systems. The International Society for Optical Engineering, Bellingham, WA, USA

    Google Scholar 

  11. Hunt R (1987) The reproduction of colour. Fountain Press, England

    Google Scholar 

  12. Isogai T (1996) Photoelectric conversion device utilizing a JFET. US Patent 5,528,059

    Google Scholar 

  13. Kim YC, Kim YT, Choi SH, Kong HK, Hwang SI, Ko JH, Kim BS, Asaba T, Lim SH, Hahn JS, Im JH, Oh TS, Yi DM, Lee JM, Yang WP, Ahn JC, Jung ES, Lee YH (2006) 1/2-inch 7.2mpixel cmos image sensor with 2.25/spl mu/m pixels using 4-shared pixel structure for pixel-level summation. pp 1994–2003

    Google Scholar 

  14. Kodak KAI-16000 image sensor. http://www.kodak.com/global/plugins/acrobat/en/business/ISS/datasheet/interline/KAI-16000LongSpec.pdf

  15. Why a color may not reproduce correctly. http://www.kodak.com/global/en/professional/support/techPubs/e73/e73.pdf

  16. KAF-50100 image sensor. http://www.kodak.com/global/plugins/acrobat/en/business/ISS/datasheet/fullframe/KAF-50100LongSpec.pdf (2010)

  17. KAI-11002 image sensor. http://www.kodak.com/global/plugins/acrobat/en/business/ISS/datasheet/interline/KAI-11002LongSpec.pdf (2010)

  18. Manoury EJ, Klaassens W, van Kuijk H, Meessen L, Kleimann A, Bogaart E, Peters I, Stoldt H, Koyuncu M, Bosiers J (2008) A 36 \(\times 48 \text{ mm}^{2}\) 48m-pixel CCD imager for professional DSC applications. pp 1–4

    Google Scholar 

  19. McColgin WC, Tivarus C, Swanson CC, Filo AJ (2007) Bright-pixel defects in irradiated ccd image sensors. In: Materials research society symposium proceedings, vol 994, p 341

    Google Scholar 

  20. Meyers MM (1997) Diffractive/refractive lenlet array. US Patent 5,696,371

    Google Scholar 

  21. Meynants G, Scheffer D, Dierickx B, Alaerts A (2004) A 14-megapixel \(36 \times 24-\text{ mm}^{2}\) image sensor. pp. 168–174, SPIE. 10.1117/12.525339. http://link.aip.org/link/?PSI/5301/168/1

  22. Nakamura J (ed) (2005) Image sensors and signal processing for digital still cameras (Optical science and engineering). CRC Press, Boca Raton

    Google Scholar 

  23. Ochi S (1984) Photosensor pattern of solid-state imaging sensors. US Patent 4,441,123

    Google Scholar 

  24. Ohta J (2007) Smart CMOS image sensors and applications (Optical science and engineering). CRC Press, Boca Raton

    Google Scholar 

  25. Palum R (2009) Optical antialiasing filters. In: Lukac R (ed) Single-sensor imaging. CRC Press, Boca Raton

    Google Scholar 

  26. Pecoraro G, Shelestak L (1988) Transparent infrared absorbing glass and method of making. US Patent 4,792,536

    Google Scholar 

  27. Poplin D (2006) An automatic flicker detection method for embedded camera systems. IEEE Trans Consum Electron 52(2):308–311

    Article  Google Scholar 

  28. Popovic Z, Sprague R, Neville Connell G (1987) Pedestal-type microlens fabrication process. US Patent 4,689,291

    Google Scholar 

  29. Stevens E, Komori H, Doan H, Fujita H, Kyan J, Parks C, Shi G, Tivarus C, Wu J (2008) Low-crosstalk and low-dark-current cmos image-sensor technology using a hole-based detector. pp 60–595

    Google Scholar 

  30. Tamburrino D, Speigle JM, Tweet DJ, LeeJJ (2010) 2PFC\(^\text{ TM}\)(two pixels, full color): image sensor demosaicing and characterization. J Electron Imaging 19(2): 021103-1–021103-13

    Google Scholar 

  31. Turner RM, Guttosch RJ (2006) Development challenges of a new image capture technology: foveon X3 image sensors. In: International congress of imaging science, pp 175–181, Rochester, NY, USA

    Google Scholar 

  32. Watanabe M, Nayar S (1995) Telecentric optics for computational vision. In: Proceedings of the European Conference on Computer Vision, pp 439–451

    Google Scholar 

  33. Yamamoto Y, Iwamoto H (2006) Solid-state imaging device and method of manufacturing solid-state imaging device background of the invention. US Patent 7,101,726

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge many helpful discussions with Mrityunjay Kumar and Aaron Deever in the development and review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Adams Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adams, J.E., Pillman, B. (2013). Digital Camera Image Formation: Introduction and Hardware. In: Sencar, H., Memon, N. (eds) Digital Image Forensics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0757-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0757-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0756-0

  • Online ISBN: 978-1-4614-0757-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics