Skip to main content

Development Anatomy and Its Impact on Hip Function

  • Chapter
  • First Online:
Hip Joint Restoration

Abstract

Successful development and maturation of the hip involves ongoing integration of various congenital, environmental and morphological stimuli over a period of time. The development of the proximal femur and acetabulum are interdependent and changes in either component affect the development of the other and abnormal morphology of the hip can predispose the joint to particular patterns of injury and development of osteoarthritic changes. Some of the anatomical shapes seen in the young adults with mechanical problems of the hip might be related to the evolutionary demand of upright posture and running. The ossification process within the proximal femur and the acetabulum is complex and susceptible to various insults depending upon the stage of development. The identification of various aetiological factors associated with abnormal hip development is important as some can be modified. There is strong evidence suggesting the role of certain physical activities during skeletal maturation may influence the growth and development of the hip joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris-Hayes M, Royer NK. Relationship of acetabular dysplasia and femoroacetabular impingement to hip osteoarthritis: a focused review. PM R. 2011;3(11):1055–67.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Serrat MA, Reno PL, McCollum MA, Meindl RS, Lovejoy CO. Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. J Anat. 2007;210(3):249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hogervorst T, Bouma H, de Boer SF, De VJ. Human hip impingement morphology: an evolutionary explanation. J Bone Joint Surg (Br). 2011;93(6):769–76.

    Article  CAS  Google Scholar 

  4. Hogervorst T, Bouma HW. Coxa recta (cam-type) proximal femoral morphology: what causes it. Hip Int. 2011;21(3):383–4.

    Article  PubMed  Google Scholar 

  5. Watanabe RS. Embryology of the human hip. Clin Orthop Relat Res. 1974;98:8–26.

    Article  Google Scholar 

  6. Lee MC, Eberson CP. Growth and development of the child’s hip. Orthop Clin North Am. 2006;37(2):119–32, v.

    Article  PubMed  Google Scholar 

  7. Domzalski ME, Glutting J, Bowen JR, Littleton AG. Lateral acetabular growth stimulation following a labral support procedure in Legg-Calve-Perthes disease. J Bone Joint Surg Am. 2006;88(7):1458–66.

    PubMed  Google Scholar 

  8. Steppacher SD, Tannast M, Werlen S, Siebenrock KA. Femoral morphology differs between deficient and excessive acetabular coverage. Clin Orthop Relat Res. 2009;466(4):782–90.

    Article  Google Scholar 

  9. Ponseti IV. Growth and development of the acetabulum in the normal child. Anatomical, histological, and roentgenographic studies. J Bone Joint Surg Am. 1978;60(5):575–85.

    Article  CAS  PubMed  Google Scholar 

  10. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The watershed labral lesion. J Arthroplasty. 2001;16(8 (Suppl 1)):81–7.

    Article  CAS  PubMed  Google Scholar 

  11. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:25–37.

    Article  Google Scholar 

  12. Cashin M, Uhthoff HK, O’Neill M, Beaule PE. Embryology of the acetabular-labral complex. J Bone Joint Surg (Br). 2008;90(8):1019–24.

    Article  CAS  Google Scholar 

  13. Harrison TJ. The growth of the pelvis in the rat; a mensural and morphological study. J Anat. 1958;92(2):236–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanders JO, Browne RH, Cooney TE, Finegold DN, McConnell SJ, Margraf SA. Correlates of the peak height velocity in girls with idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(20):2289–95.

    Article  Google Scholar 

  15. Sanders JO, Browne RH, McConnell SJ, Margraf SA, Cooney TE, Finegold DN. Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am. 2007;89(1):64–73.

    PubMed  Google Scholar 

  16. Tonnis D. Congenital dysplasia and dislocation of the hip. Berlin: Springer; 1987. p. 76–7.

    Book  Google Scholar 

  17. Lovell WW, Winter RB, Morrissy RT, Weinstein SL. Lovell and Winter’s pediatric orthopaedics. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  18. Siffert RS. Patterns of deformity of the developing hip. Clin Orthop Relat Res. 1981;160:14–29.

    Google Scholar 

  19. Ward FO. Outlines of human osteology. London, UK: Renshaw; 1838.

    Google Scholar 

  20. Hensinger RN. Standards in pediatric orthopaedics: tables, charts and graphs illustrating growth. New York, NY: Raven; 1986.

    Google Scholar 

  21. Tachdjian MO. Pediatric orthopedics. Philadelphia, PA: W B Saunders; 1990.

    Google Scholar 

  22. Kutlu A, Memik R, Mutlu M, Kutlu R, Arslan A. Congenital dislocation of the hip and its relation to swaddling used in Turkey. J Pediatr Orthop. 1992;12(5):598–602.

    Article  CAS  PubMed  Google Scholar 

  23. Siebenrock KA, Wahab KHA, Werlen S, Kalhor M, Leunig M, Ganz R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res. 2004;418(418):54–60.

    Article  Google Scholar 

  24. Aronsson DD, Goldberg MJ, Kling Jr TF, Roy DR. Developmental dysplasia of the hip. Pediatrics. 1994;94(2 Pt 1):201–8.

    CAS  PubMed  Google Scholar 

  25. Murray RO. The aetiology of primary osteoarthritis of the hip. Br J Radiol. 1965;38:810–24.

    Article  CAS  PubMed  Google Scholar 

  26. Agricola R, Bessems JH, Ginaj AZ, Heijboer MP, van der Heijden RA, Verhaar JA, et al. The development of Cam-type deformity in adolescent and young male soccer players. Am J Sports Med. 2012;40(5):1099–10106.

    Article  PubMed  Google Scholar 

  27. Kapron AL, Anderson AE, Aoki SK, Phillips LG, Petron DJ, Toth R, et al. Radiographic prevalence of femoroacetabular impingement in collegiate football players: AAOS Exhibit Selection. J Bone Joint Surg Am. 2011;93(19):e111–10.

    Article  PubMed  Google Scholar 

  28. Siebenrock KA, Kaschka I, Frauchiger L, Werlen S, Schwab JM. Prevalence of cam-type deformity and hip pain in elite ice hockey players before and after the end of growth. Am J Sports Med. 2013;41:2308–13.

    Article  PubMed  Google Scholar 

  29. Philippon MJ, Ho CP, Briggs KK, Stull J, Laprade RF. Prevalence of increased alpha angles as a measure of cam-type femoroacetabular impingement in youth ice hockey players. Am J Sports Med. 2013;41(6):1357–62.

    Article  PubMed  Google Scholar 

  30. Bries AD, Weiner DS, Jacquet R, Adamczyk MA, Morscher MA, Lowder E, et al. A study in vivo of the effects of a static compressive load on the proximal tibial physis in rabbits. J Bone Joint Surg. 2012;94(15):e1111–10.

    Article  PubMed  Google Scholar 

  31. Wiemann JM, Tryon C, Szalay EA. Physeal stapling versus 8-plate hemiepiphysiodesis for guided correction of angular deformity about the knee. J Pediatr Orthop. 2009;29(5):481–5.

    Article  PubMed  Google Scholar 

  32. Wyland DJ, Pill SG, Shanley E, Clark JC, Hawkins RJ, Noonan TJ, et al. Bony adaptation of the proximal humerus and glenoid correlate within the throwing shoulder of professional baseball pitchers. Am J Sports Med. 2012;40(8):1858–62.

    Article  PubMed  Google Scholar 

  33. Sabick MB, Kim YK, Torry MR, Keirns MA, Hawkins RJ. Biomechanics of the shoulder in youth baseball pitchers: implications for the development of proximal humeral epiphysiolysis and humeral retrotorsion. Am J Sports Med. 2005;33(11):1716–22.

    Article  PubMed  Google Scholar 

  34. Wei AS, Khana S, Limpisvasti O, Crues J, Podesta L, Yocum LA. Clinical and magnetic resonance imaging findings associated with Little League elbow. J Pediatr Orthop. 2010;30(7):715–9.

    Article  PubMed  Google Scholar 

  35. Nilsson M, Ohlsson C, Mellstrom D, Lorentzon M. Previous sport activity during childhood and adolescence is associated with increased cortical bone size in young adult men. J Bone Miner Res. 2009;24:125–33.

    Article  PubMed  Google Scholar 

  36. Carsen SA, Morrey P, Rakhra KS, Ward LM, Dunlap H, Hay JA, et al. The Otto Aufranc Award: on the etiology of the cam deformity: a cross-sectional paediatric MRI study. Clin Orthop Relat Res. 2014;472(2):430–6.

    Article  PubMed  Google Scholar 

  37. Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC. The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res. 2011;469(11):3229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wynne-Davies R. Acetabular dysplasia and familial joint laxity: two etiological factors in congenital dislocation of the hip. A review of 589 patients and their families. J Bone Joint Surg (Br). 1970;52(4):704–16.

    CAS  Google Scholar 

  39. Wynne-Davies R. Heritable disorders in orthopaedic practice. Edinburgh, Scotland: Blackwell Science; 1973.

    Google Scholar 

  40. Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Murray DW, et al. Genetic influences in the aetiology of femoroacetabular impingement: a sibling study. J Bone Joint Surg (Br). 2010;92(2):209–16.

    Article  CAS  Google Scholar 

  41. Busch MT, Morrissy RT. Slipped capital femoral epiphysis. Orthop Clin North Am. 1987;18(4):637–47.

    CAS  PubMed  Google Scholar 

  42. Crawford AH. Slipped capital femoral epiphysis. J Bone Joint Surg Am. 1988;70(9):1422–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hagglund G, Hansson LI, Ordeberg G. Epidemiology of slipped capital femoral epiphysis in southern Sweden. Clin Orthop Relat Res. 1984;191:82–94.

    Google Scholar 

  44. Hagglund G, Hansson LI, Ordeberg G, Sandstrom S. Bilaterality in slipped upper femoral epiphysis. J Bone Joint Surg (Br). 1988;70(2):179–81.

    CAS  Google Scholar 

  45. Ordeberg G, Hansson LI, Sandstrom S. Slipped capital femoral epiphysis in southern Sweden. Long-term result with no treatment or symptomatic primary treatment. Clin Orthop Relat Res. 1984;191:95–104.

    Google Scholar 

  46. Peyron J. Inflammation in osteoarthritis (OA): review of its role in clinical picture, disease progress, subsets, and pathophysiology. Semin Arthritis Rheum. 1981;11(1):115–6.

    Article  Google Scholar 

  47. Elmslie RC. Remarks on aetiological factors in osteo-arthritis of the hip-joint. Br Med J. 1933;1(3757):1–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Law WA. Osteoarthritis of the hip. Br J Surg. 1953;40(162):405–6.

    Google Scholar 

  49. Solomon L. Patterns of osteoarthritis of the hip. J Bone Joint Surg. 1976;58(3):176–83.

    CAS  Google Scholar 

  50. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. J Bone Joint Surg. 1997;79A(10):1489–97.

    Article  Google Scholar 

  51. Stulberg SD, Cordell LD, Harris WH, Ramsey PL, MacEwen GD. Unrecognized childhood hip disease: a major cause of idiopathic osteoarthritis of the hip. In: Amstutz HC, editor. The Hip, Proceedings of the third open scientific meeting of the Hip Society. CV Mosby: St Louis; 1975. p. 212–28.

    Google Scholar 

  52. Kienle KP, Keck J, Werlen S, Kim YJ, Siebenrock KA, Mamisch TC. Femoral morphology and epiphyseal growth plate changes of the hip during maturation: MR assessments in a 1-year follow-up on a cross-sectional asymptomatic cohort in the age range of 9-17 years. Skeletal Radiol. 2012;41(11):1381–90.

    Article  PubMed  Google Scholar 

  53. Carter CW, Bixby S, Yen YM, Nasreddine AY, Kocher MS. The relationship between cam lesion and physis in skeletally immature patients. J Pediatr Orthop. 2014;34(6):579–84.

    PubMed  Google Scholar 

  54. Monazzam S, Bomar JD, Dwek JR, Hosalkar HS, Pennock AT. Development and prevalence of femoroacetabular impingement-associated morphology in a paediatric and adolescent population: a CT study of 225 patients. Bone Joint J. 2013;95-B(5):598–604.

    Article  CAS  PubMed  Google Scholar 

  55. Hogervorst T. Osteoarthritis: a consequence of human evolution? Bone Joint 360 2012;1(1):2-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Beaulé MD, FRCSC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Singh, A., Beaulé, P.E. (2017). Development Anatomy and Its Impact on Hip Function. In: McCarthy, J., Noble, P., Villar, R. (eds) Hip Joint Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0694-5_99

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0694-5_99

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0693-8

  • Online ISBN: 978-1-4614-0694-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics