Skip to main content

Corneal Nerves

Useful for Ophthalmology But Indispensable for Neurology

  • Chapter
  • First Online:
In Vivo Confocal Microscopy in Eye Disease

Abstract

Sight is essential for our survival and given that the cornea accounts for almost two thirds of the eye’s optical power it has optimally evolved to protect this most important of senses. Hence, our cornea is endowed with the richest sensory supply in the human body comprised mainly of unmyelinated C-fibers in the subbasal nerve plexus and thinly myelinated Aδ-fibers in the stroma. They exhibit both afferent and efferent functions offering protection from noxious stimuli and playing an important role in tear secretion, blinking and wound healing. There is also sparse sympathetic innervation predominantly located in the limbal stroma. Over the last two decades, the advent of in-vivo corneal confocal microscopy (CCM) has led to a growing interest in quantifying corneal nerves in ophthalmic and systemic diseases. We focus on corneal nerve alterations in health and disease and the utility of CCM as an imaging endpoint in neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Rahilly R. The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol. 1983;168(1):87–99.

    Article  Google Scholar 

  2. Dodson JW, Hay ED. Secretion of collagenous stroma by isolated epithelium grown in vitro. Exp Cell Res. 1971;65(1):215–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hay ED, Revel J-P. Fine structure of the developing avian cornea. 1969.

    Google Scholar 

  4. Cai CX, Fitch JM, Svoboda KKH, Birk DE, Linsenmayer TF. Cellular invasion and collagen type IX in the primary corneal stroma in vitro. Dev Dyn. 1994;201(3):206–15.

    Article  CAS  PubMed  Google Scholar 

  5. Eghrari AO, Riazuddin SA, Gottsch JD. Chapter 2 - Overview of the cornea: structure, function, and development. In: Hejtmancik JF, Nickerson JM, editors. Progress in molecular biology and translational science, vol. 134. Academic; 2015. p. 7–23.

    Google Scholar 

  6. Kitano S. An embryological study on the human corneal nerves. Jpn J Ophthalmol. 1957;1:48–55.

    Google Scholar 

  7. Schlemm T. Nerven der Cornea. Ammon’ Z Ophthalmol. 1831;1:113–4.

    Google Scholar 

  8. Müller L, Pels L, Vrensen G. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996;37(4):476–88.

    PubMed  Google Scholar 

  9. Müller L, Vrensen G, Pels L, Cardozo BN, Willekens B. Architecture of human corneal nerves. Invest Ophthalmol Vis Sci. 1997;38(5):985–94.

    PubMed  Google Scholar 

  10. Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001;20(4):374–84.

    Article  CAS  PubMed  Google Scholar 

  11. Schimmelpfennig B. Nerve structures in human central corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 1982;218(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  12. Zander E, Weddell G. Observations on the innervation of the cornea. J Anat. 1951;85(Pt 1):68.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. LaGuardia JJ, Cohrs RJ, Gilden DH. Numbers of neurons and non-neuronal cells in human trigeminal ganglia. Neurol Res. 2000;22(6):565–6.

    Article  CAS  PubMed  Google Scholar 

  14. Müller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76(5):521–42.

    Article  PubMed  Google Scholar 

  15. Dua HS, Gomes JA, Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994;78(5):401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marfurt CF. Sympathetic innervation of the rat cornea as demonstrated by the retrograde and anterograde transport of horseradish peroxidase–wheat germ agglutinin. J Comp Neurol. 1988;268(2):147–60.

    Article  CAS  PubMed  Google Scholar 

  17. Toivanen M, Tervo T, Partanen M, Vannas A, Hervonen A. Histochemical demonstration of adrenergic nerves in the stroma of human cornea. Invest Ophthalmol Vis Sci. 1987;28(2):398–400.

    CAS  PubMed  Google Scholar 

  18. Al-Aqaba MA, Fares U, Suleman H, Lowe J, Dua HS. Architecture and distribution of human corneal nerves. Br J Ophthalmol. 2010;94(6):784–9.

    Article  PubMed  Google Scholar 

  19. He J, Bazan NG, Bazan HEP. Mapping the entire human corneal nerve architecture. Exp Eye Res. 2010;91(4):513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res. 2010;90(4):478–92.

    Article  CAS  PubMed  Google Scholar 

  21. Dua HS, Watson NJ, Mathur RM, Forrester JV. Corneal epithelial cell migration in humans: ‘Hurricane and blizzard keratopathy’. Eye. 1993;7(1):53–8.

    Article  PubMed  Google Scholar 

  22. Harris LW, Purves D. Rapid remodeling of sensory endings in the corneas of living mice. J Neurosci. 1989;9(6):2210–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Al-Aqaba MA, Dhillon VK, Mohammed I, Said DG, Dua HS. Corneal nerves in health and disease. Prog Retin Eye Res. 2019;73:100762.

    Article  PubMed  Google Scholar 

  24. Peng YB, Ringkamp M, Campbell JN, Meyer RA. Electrophysiological assessment of the cutaneous arborization of Aδ-fiber nociceptors. J Neurophysiol. 1999;82(3):1164–77.

    Article  CAS  PubMed  Google Scholar 

  25. Tubbs RS, Rizk E, Shoja MM, Loukas M, Barbaro N, Spinner RJ. Nerves and nerve injuries. In: Pain, treatment, injury, disease and future directions, vol. 2. Academic Press; 2015.

    Google Scholar 

  26. Belmonte C, Carmen Acosta M, Gallar J. Neural basis of sensation in intact and injured corneas. Exp Eye Res. 2004;78(3):513–25.

    Article  CAS  PubMed  Google Scholar 

  27. González-González O, Bech F, Gallar J, Merayo-Lloves J, Belmonte C. Functional properties of sensory nerve terminals of the mouse cornea. Invest Ophthalmol Vis Sci. 2017;58(1):404–15.

    Article  PubMed  Google Scholar 

  28. Kawashima W, Hatake K, Kudo R, Nakanishi M, Tamaki S, Kasuda S, et al. Estimating the time after death on the basis of corneal opacity. J Forensic Res. 2015;6(1):1–5.

    Google Scholar 

  29. Pacaud D, Romanchuk KG, Tavakoli M, Gougeon C, Virtanen H, Ferdousi M, et al. The reliability and reproducibility of corneal confocal microscopy in children. Invest Ophthalmol Vis Sci. 2015;56(9):5636–40.

    Article  PubMed  Google Scholar 

  30. Sellers E, Clark I, Tavakoli M, Dean H, McGavock J. The acceptability and feasibility of corneal confocal microscopy to detect early diabetic neuropathy in children: a pilot study. Diabet Med. 2013;30(5):630–1.

    Article  CAS  PubMed  Google Scholar 

  31. Erie JC, McLaren JW, Hodge DO, Bourne WM. The effect of age on the corneal subbasal nerve plexus. Cornea. 2005;24(6)

    Google Scholar 

  32. Grupcheva CN, Wong T, Riley AF, McGhee C. Assessing the sub-basal nerve plexus of the living healthy human cornea by in vivo confocal microscopy. Clin Exp Ophthalmol. 2002;30(3):187–90.

    Article  PubMed  Google Scholar 

  33. Patel D. In vivo confocal microscopy of the cornea in health and disease: ResearchSpace@Auckland; 2005.

    Google Scholar 

  34. Tavakoli M, Ferdousi M, Petropoulos IN, Morris J, Pritchard N, Zhivov A, et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care. 2015;38(5):838–43.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patel DV, McGhee CN. Mapping of the normal human corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2005;46(12):4485–8.

    Article  PubMed  Google Scholar 

  36. You JY, Cavalcanti B, Cheng S, Trinidad M, Critser D, Watts A, et al. Laser in vivo confocal microscopy demonstrates a lower density of peripheral corneal nerve fibers compared to the central cornea in normal subjects. Invest Ophthalmol Vis Sci. 2013;54(15):531.

    Google Scholar 

  37. Auran JD, Koester CJ, Kleiman NJ, Rapaport R, Bomann JS, Wirotsko BM, et al. Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology. 1995;102(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  38. Patel DV, McGhee CNJ. In vivo laser scanning confocal microscopy confirms that the human corneal sub-basal nerve plexus is a highly dynamic structure. Invest Ophthalmol Vis Sci. 2008;49(8):3409–12.

    Article  PubMed  Google Scholar 

  39. Al Rashah K, Pritchard N, Dehghani C, Ruggeri A, Guimaraes P, Russell A, et al. Corneal nerve migration rate in a healthy control population. Optom Vis Sci. 2018;95(8):672–7.

    Article  PubMed  Google Scholar 

  40. Dehghani C, Pritchard N, Edwards K, Vagenas D, Russell AW, Malik RA, et al. Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophthalmol Vis Sci. 2014;55(5):3195–9.

    Article  PubMed  Google Scholar 

  41. Patel SV, McLaren JW, Hodge DO, Bourne WM. Confocal microscopy in vivo in corneas of long-term contact lens wearers. Invest Ophthalmol Vis Sci. 2002;43(4):995–1003.

    PubMed  Google Scholar 

  42. Golebiowski B, Papas EB, Stapleton F. Corneal and conjunctival sensory function: the impact on ocular surface sensitivity of change from low to high oxygen transmissibility contact lenses. Invest Ophthalmol Vis Sci. 2012;53(3):1177–81.

    Article  PubMed  Google Scholar 

  43. Oliveira-Soto L, Efron N. Morphology of corneal nerves in soft contact lens wear. A comparative study using confocal microscopy. Ophthalmic Physiol Opt. 2003;23(2):163–74.

    Article  PubMed  Google Scholar 

  44. Dogru M, Ward SK, Wakamatsu T, Ibrahim O, Schnider C, Kojima T, et al. The effects of 2 week senofilcon—a silicone hydrogel contact lens daily wear on tear functions and ocular surface health status. Cont Lens Anterior Eye. 2011;34(2):77–82.

    Article  PubMed  Google Scholar 

  45. Liu Q, McDermott AM, Miller WL. Elevated nerve growth factor in dry eye associated with established contact lens wear. Eye Contact Lens. 2009;35(5):232–7.

    Article  PubMed  Google Scholar 

  46. Lum E, Golebiowski B, Swarbrick HA. Mapping the corneal sub-basal nerve plexus in orthokeratology lens wear using in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2012;53(4):1803–9.

    Article  PubMed  Google Scholar 

  47. Lum E, Golebiowski B, Swarbrick HA. Reduced corneal sensitivity and sub-basal nerve density in long-term orthokeratology lens wear. Eye Contact Lens. 2017;43(4):218–24.

    Article  PubMed  Google Scholar 

  48. Nombela-Palomo M, Felipe-Marquez G, Teus MA, Hernandez-Verdejo JL, Nieto-Bona A. Long-term impacts of orthokeratology treatment on sub-basal nerve plexus and corneal sensitivity responses and their reversibility. Eye Contact Lens. 2018;44(2):91–6.

    Article  PubMed  Google Scholar 

  49. Kauffmann T, Bodanowitz S, Hesse L, Kroll P. Corneal reinnervation after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study with a confocal videomicroscope. Ger J Ophthalmol. 1996;5(6):508–12.

    CAS  PubMed  Google Scholar 

  50. Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc. 2003;101:293–333.

    PubMed  PubMed Central  Google Scholar 

  51. Erie JC, McLaren JW, Hodge DO, Bourne WM. Recovery of corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol. 2005;140(6):1059–64.e1.

    Article  PubMed  Google Scholar 

  52. Moilanen JAO, Vesaluoma MH, Müller LJ, Tervo TMT. Long-term corneal morphology after PRK by in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2003;44(3):1064–9.

    Article  PubMed  Google Scholar 

  53. Linna T, Tervo T. Real-time confocal microscopic observations on human corneal nerves and wound healing after excimer laser photorefractive keratectomy. Curr Eye Res. 1997;16(7):640–9.

    Article  CAS  PubMed  Google Scholar 

  54. Linna TU, Vesaluoma MH, Pérez-Santonja JJ, Petroll WM, Alió JL, Tervo TMT. Effect of myopic LASIK on corneal sensitivity and morphology of subbasal nerves. Invest Ophthalmol Vis Sci. 2000;41(2):393–7.

    CAS  PubMed  Google Scholar 

  55. Stachs O, Zhivov A, Kraak R, Hovakimyan M, Wree A, Guthoff R. Structural-functional correlations of corneal innervation after lasik and penetrating keratoplasty. J Refract Surg. 2010;26(3):159–67.

    Article  PubMed  Google Scholar 

  56. Slowik C, Somodi S, Richter A, Guthoff R. Assessment of corneal alterations following laser in situ keratomileusis by confocal slit scanning microscopy. Ger J Ophthalmol. 1996;5(6):526–31.

    CAS  PubMed  Google Scholar 

  57. Donnenfeld ED, Solomon K, Perry HD, Doshi SJ, Ehrenhaus M, Solomon R, et al. The effect of hinge position on corneal sensation and dry eye after LASIK. Ophthalmology. 2003;110(5):1023–9.

    Article  PubMed  Google Scholar 

  58. Calvillo MP, McLaren JW, Hodge DO, Bourne WM. Corneal reinnervation after lasik: prospective 3-year longitudinal study. Invest Ophthalmol Vis Sci. 2004;45(11):3991–6.

    Article  PubMed  Google Scholar 

  59. Bragheeth M, Dua H. Corneal sensation after myopic and hyperopic LASIK: clinical and confocal microscopic study. Br J Ophthalmol. 2005;89(5):580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chao C, Golebiowski B, Stapleton F. The role of corneal innervation in LASIK-induced neuropathic dry eye. Ocul Surf. 2014;12(1):32–45.

    Article  PubMed  Google Scholar 

  61. Perez-Gomez I, Efron N. Change to corneal morphology after refractive surgery (myopic laser in situ keratomileusis) as viewed with a confocal microscope. Optom Vis Sci. 2003;80(10):690–7.

    Article  PubMed  Google Scholar 

  62. Chuck RS, Quiros PA, Perez AC, McDonnell PJ. Corneal sensation after laser in situ keratomileusis. J Cataract Refract Surg. 2000;26(3):337–9.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang F, Deng S, Guo N, Wang M, Sun X. Confocal comparison of corneal nerve regeneration and keratocyte reaction between FS-LASIK, OUP-SBK, and conventional LASIK. Invest Ophthalmol Vis Sci. 2012;53(9):5536–44.

    Article  PubMed  Google Scholar 

  64. Lamm V, Hara H, Mammen A, Dhaliwal D, Cooper DKC. Corneal blindness and xenotransplantation. Xenotransplantation. 2014;21(2):99–114.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Szaflik JP, Kamińska A, Udziela M, Szaflik J. In vivo confocal microscopy of corneal grafts shortly after penetrating keratoplasty. Eur J Ophthalmol. 2007;17(6):891–6.

    Article  CAS  PubMed  Google Scholar 

  66. Hollingsworth JG, Efron N, Tullo AB. A longitudinal case series investigating cellular changes to the transplanted cornea using confocal microscopy. Cont Lens Anterior Eye. 2006;29(3):135–41.

    Article  PubMed  Google Scholar 

  67. Patel SV, Erie JC, McLaren JW, Bourne WM. Keratocyte and subbasal nerve density after penetrating keratoplasty. Trans Am Ophthalmol Soc. 2007;105:180.

    PubMed  PubMed Central  Google Scholar 

  68. Al-Aqaba MA, Otri AM, Fares U, Miri A, Dua HS. Organization of the regenerated nerves in human corneal grafts. Am J Ophthalmol. 2012;153(1):29–37.e4.

    Article  PubMed  Google Scholar 

  69. Darwish T, Brahma A, Efron N, O’Donnell C. Subbasal nerve regeneration after penetrating keratoplasty. Cornea. 2007;26(8)

    Google Scholar 

  70. Richter A, Slowik C, Somodi S, Vick HP, Guthoff R. Corneal reinnervation following penetrating keratoplasty--correlation of esthesiometry and confocal microscopy. Ger J Ophthalmol. 1996;5(6):513–7.

    CAS  PubMed  Google Scholar 

  71. Ceccuzzi R, Zanardi A, Fiorentino A, Tinelli C, Bianchi PE. Corneal sensitivity in keratoconus after penetrating and deep anterior lamellar keratoplasty. Ophthalmologica. 2010;224(4):247–50.

    Article  CAS  PubMed  Google Scholar 

  72. Al-Aqaba M, Calienno R, Fares U, Otri AM, Mastropasqua L, Nubile M, et al. The effect of standard and transepithelial ultraviolet collagen cross-linking on human corneal nerves: an ex vivo study. Am J Ophthalmol. 2012;153(2):258–66.e2.

    Article  PubMed  Google Scholar 

  73. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Paradiso AL. Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol. 2012;22(7_suppl)):81–8.

    Article  Google Scholar 

  74. Croxatto JO, Tytiun AE, Argento CJ. Sequential in vivo confocal microscopy study of corneal wound healing after cross-linking in patients with keratoconus. J Refract Surg. 2010;26(9):638–45.

    Article  PubMed  Google Scholar 

  75. Brookes N, Loh I-P, Clover G, Poole C, Sherwin T. Involvement of corneal nerves in the progression of keratoconus. Exp Eye Res. 2003;77(4):515–24.

    Article  CAS  PubMed  Google Scholar 

  76. Patel DV, McGhee CN. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2006;47(4):1348–51.

    Article  PubMed  Google Scholar 

  77. Simo Mannion L, Tromans C, O’Donnell C. An evaluation of corneal nerve morphology and function in moderate keratoconus. Cont Lens Anterior Eye. 2005;28(4):185–92.

    Article  PubMed  Google Scholar 

  78. Bitirgen G, Ozkagnici A, Bozkurt B, Malik RA. In vivo corneal confocal microscopic analysis in patients with keratoconus. Int J Ophthalmol. 2015;8(3):534–9.

    PubMed  PubMed Central  Google Scholar 

  79. Al-Aqaba MA, Faraj L, Fares U, Otri AM, Dua HS. The morphologic characteristics of corneal nerves in advanced keratoconus as evaluated by acetylcholinesterase technique. Am J Ophthalmol. 2011;152(3):364–76.e1.

    Article  PubMed  Google Scholar 

  80. Lemp MA, Foulks GN. The definition and classification of dry eye disease. Ocul Surf. 2007;5(2):75–92.

    Article  Google Scholar 

  81. Labbé A, Liang Q, Wang Z, Zhang Y, Xu L, Baudouin C, et al. Corneal nerve structure and function in patients with non-sjögren dry eye: clinical correlations. Invest Ophthalmol Vis Sci. 2013;54(8):5144–50.

    Article  PubMed  Google Scholar 

  82. Villani E, Magnani F, Viola F, Santaniello A, Scorza R, Nucci P, et al. In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom Vis Sci. 2013;90(6)

    Google Scholar 

  83. Zhang M, Chen J, Luo L, Xiao Q, Sun M, Liu Z. Altered corneal nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea. 2005;24(7):818–24.

    Article  PubMed  Google Scholar 

  84. Kheirkhah A, Dohlman TH, Amparo F, Arnoldner MA, Jamali A, Hamrah P, et al. Effects of corneal nerve density on the response to treatment in dry eye disease. Ophthalmology. 2015;122(4):662–8.

    Article  PubMed  Google Scholar 

  85. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Prim. 2017;3(1):17002.

    Article  PubMed  Google Scholar 

  86. Goyal S, Hamrah P. Understanding neuropathic corneal pain—gaps and current therapeutic approaches. Semin Ophthalmol. 2016;31(1–2):59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rosenthal P, Baran I, Jacobs DS. Corneal pain without stain: is it real? Ocul Surf. 2009;7(1):28–40.

    Article  PubMed  Google Scholar 

  88. Shetty R, Deshpande K, Deshmukh R, Jayadev C, Shroff R. Bowman break and subbasal nerve plexus changes in a patient with dry eye presenting with chronic ocular pain and vitamin D deficiency. Cornea. 2016;35(5):688–91.

    Article  PubMed  Google Scholar 

  89. Moein H-R, Dieckmann G, Abbouda A, Pondelis N, Jamali A, Salem Z, et al. In vivo confocal microscopy demonstrates the presence of microneuromas and may allow differentiation of patients with corneal neuropathic pain from dry eye disease. Invest Ophthalmol Vis Sci. 2017;58(8):2656.

    Google Scholar 

  90. Ross AR, Al-Aqaba MA, Almaazmi A, Messina M, Nubile M, Mastropasqua L, et al. Clinical and in vivo confocal microscopic features of neuropathic corneal pain. Br J Ophthalmol. 2020;104(6):768–75.

    Article  PubMed  Google Scholar 

  91. Aggarwal S, Colon C, Kheirkhah A, Hamrah P. Efficacy of autologous serum tears for treatment of neuropathic corneal pain. Ocul Surf. 2019;17(3):532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bayraktutar BN, Ozmen MC, Muzaaya N, Dieckmann G, Koseoglu ND, Müller RT, et al. Comparison of clinical characteristics of post-refractive surgery-related and post-herpetic neuropathic corneal pain. Ocul Surf. 2020;18(4):641–50.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Patel DV, McGhee CN. Laser scanning in vivo confocal microscopy demonstrating significant alteration of human corneal nerves following herpes zoster ophthalmicus. Arch Neurol. 2010;67(5):640–1.

    Article  PubMed  Google Scholar 

  94. Martone G, Alegente M, Balestrazzi A, Nuti E, Traversi C, Pichierri P, et al. In vivo confocal microscopy in bilateral herpetic keratitis: a case report. London: Sage; 2008.

    Google Scholar 

  95. Hamrah P, Cruzat A, Dastjerdi MH, Prüss H, Zheng L, Shahatit BM, et al. Unilateral herpes zoster ophthalmicus results in bilateral corneal nerve alteration: an in vivo confocal microscopy study. Ophthalmology. 2013;120(1):40–7.

    Article  PubMed  Google Scholar 

  96. Hamrah P, Schrems WA, Hoesl LM, Dastjerdi MH, Dana R, Pavan-Langston D. Corneal epithelial and stromal changes in patients with herpes simplex keratitis: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci. 2009;50(13):2389.

    Google Scholar 

  97. Kurbanyan K, Hoesl LM, Schrems WA, Hamrah P. Corneal nerve alterations in acute Acanthamoeba and fungal keratitis: an in vivo confocal microscopy study. Eye. 2012;26(1):126–32.

    Article  CAS  PubMed  Google Scholar 

  98. Cruzat A, Schrems WA, Schrems-Hoesl LM, Cavalcanti BM, Baniasadi N, Witkin D, et al. Contralateral clinically unaffected eyes of patients with unilateral infectious keratitis demonstrate a sympathetic immune response. Invest Ophthalmol Vis Sci. 2015;56(11):6612–20.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kobayashi A, Yokogawa H, Higashide T, Nitta K, Sugiyama K. Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2012;153(3):445–53.

    Article  PubMed  Google Scholar 

  100. Hu Y, Matsumoto Y, Adan ES, Dogru M, Fukagawa K, Tsubota K, et al. Corneal in vivo confocal scanning laser microscopy in patients with atopic keratoconjunctivitis. Ophthalmology. 2008;115(11):2004–12.

    Article  PubMed  Google Scholar 

  101. Leonardi A, Lazzarini D, Bortolotti M, Piliego F, Midena E, Fregona I. Corneal confocal microscopy in patients with vernal keratoconjunctivitis. Ophthalmology. 2012;119(3):509–15.

    Article  PubMed  Google Scholar 

  102. Fogle J, Kenyon KR, Stark WJ, Green WR. Defective epithelial adhesion in anterior corneal dystrophies. Am J Ophthalmol. 1975;79(6):925–40.

    Article  CAS  PubMed  Google Scholar 

  103. Rosenberg ME, Tervo TMT, Petroll WM, Vesaluoma MH. In vivo confocal microscopy of patients with corneal recurrent erosion syndrome or epithelial basement membrane dystrophy11The authors have no proprietary interest in the equipment used in this study. Ophthalmology. 2000;107(3):565–73.

    Article  CAS  PubMed  Google Scholar 

  104. Alomar TS, Nubile M, Lowe J, Dua HS. Corneal intraepithelial neoplasia: in vivo confocal microscopic study with histopathologic correlation. Am J Ophthalmol. 2011;151(2):238–47.

    Article  PubMed  Google Scholar 

  105. Vera LS, Gueudry J, Delcampe A, Roujeau J-C, Brasseur G, Muraine M. In vivo confocal microscopic evaluation of corneal changes in chronic Stevens-Johnson syndrome and toxic epidermal necrolysis. Cornea. 2009;28(4):401–7.

    Article  PubMed  Google Scholar 

  106. Ranno S, Fogagnolo P, Rossetti L, Orzalesi N, Nucci P. Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin Ophthalmol (Auckland, NZ). 2011;5:1037.

    Article  Google Scholar 

  107. Martone G, Frezzotti P, Tosi GM, Traversi C, Mittica V, Malandrini A, et al. An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology. Am J Ophthalmol. 2009;147(4):725–35.e1.

    Article  PubMed  Google Scholar 

  108. Rossi GCM, Blini M, Scudeller L, Ricciardelli G, Depolo L, Amisano A, et al. Effect of preservative-free tafluprost on keratocytes, sub-basal nerves, and endothelium: a single-blind one-year confocal study on naïve or treated glaucoma and hypertensive patients versus a control group. J Ocul Pharmacol Ther. 2013;29(9):821–5.

    Article  CAS  PubMed  Google Scholar 

  109. Petropoulos IN, Ponirakis G, Khan A, Gad H, Almuhannadi H, Brines M, et al. Corneal confocal microscopy: ready for prime time. Clin Exp Optom. 2020;103(3):265–77.

    Article  PubMed  Google Scholar 

  110. Petropoulos IN, Ponirakis G, Ferdousi M, Azmi S, Kalteniece A, Khan A, et al. Corneal confocal microscopy: a biomarker for diabetic peripheral neuropathy. Clin Ther. 2021.

    Google Scholar 

  111. Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, Walker J, et al. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabet Endocrinol. 2019;7(12):938–48.

    Article  Google Scholar 

  112. Petropoulos IN, Alam U, Fadavi H, Asghar O, Green P, Ponirakis G, et al. Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care. 2013;36(11):3646–51.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sharma S, Tobin V, Vas PR, Malik RA, Rayman G. The influence of age, anthropometric and metabolic variables on LDIFLARE and corneal confocal microscopy in healthy individuals. PLoS One. 2018;13(3):e0193452.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Azmi S, Ferdousi M, Petropoulos IN, Ponirakis G, Alam U, Fadavi H, et al. Corneal confocal microscopy identifies small-fiber neuropathy in subjects with impaired glucose tolerance who develop type 2 diabetes. Diabetes Care. 2015;38(8):1502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Asghar O, Petropoulos IN, Alam U, Jones W, Jeziorska M, Marshall A, et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care. 2014;37(9):2643–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Malik RA, Kallinikos P, Abbott CA, van Schie CHM, Morgan P, Efron N, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46(5):683–8.

    Article  CAS  PubMed  Google Scholar 

  117. Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56(8):2148–54.

    Article  CAS  PubMed  Google Scholar 

  118. Tavakoli M, Kallinikos PA, Efron N, Boulton AJ, Malik RA. Corneal sensitivity is reduced and relates to the severity of neuropathy in patients with diabetes. Diabetes Care. 2007;30(7):1895–7.

    Article  PubMed  Google Scholar 

  119. Tavakoli M, Begum P, McLaughlin J, Malik RA. Corneal confocal microscopy for the diagnosis of diabetic autonomic neuropathy. Muscle Nerve. 2015;52(3):363–70.

    Article  PubMed  Google Scholar 

  120. Azmi S, Ferdousi M, Alam U, Petropoulos IN, Ponirakis G, Marshall A, et al. Small-fibre neuropathy in men with type 1 diabetes and erectile dysfunction: a cross-sectional study. Diabetologia. 2017;60(6):1094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lewis EJH, Lovblom LE, Ferdousi M, Halpern EM, Jeziorska M, Pacaud D, et al. Rapid corneal nerve fiber loss: a marker of diabetic neuropathy onset and progression. Diabetes Care. 2020;43(8):1829–35.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dehghani C, Russell AW, Perkins BA, Malik RA, Pritchard N, Edwards K, et al. A rapid decline in corneal small fibers and occurrence of foot ulceration and Charcot foot. J Diabetes Complicat. 2016;30(8):1437–9.

    Article  Google Scholar 

  123. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, Fadavi H, Asghar O, Alam U, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62(1):254–60.

    Article  CAS  PubMed  Google Scholar 

  124. Azmi S, Jeziorska M, Ferdousi M, Petropoulos IN, Ponirakis G, Marshall A, et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia. 2019;62(8):1478–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ishibashi F, Taniguchi M, Kosaka A, Uetake H, Tavakoli M. Improvement in neuropathy outcomes with normalizing HbA1c in patients with type 2 diabetes. Diabetes Care. 2019;42(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  126. Jia X, Wang X, Wang X, Pan Q, Xian T, Yu X, et al. In vivo corneal confocal microscopy detects improvement of corneal nerve parameters following glycemic control in patients with type 2 diabetes. J Diabetes Res. 2018;2018:8516276.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ponirakis G, Abdul-Ghani MA, Jayyousi A, Almuhannadi H, Petropoulos IN, Khan A, et al. Effect of treatment with exenatide and pioglitazone or basal-bolus insulin on diabetic neuropathy: a substudy of the Qatar Study. BMJ Open Diabet Res Care. 2020;8(1):e001420.

    Article  Google Scholar 

  128. Adam S, Azmi S, Ho JH, Liu Y, Ferdousi M, Siahmansur T, et al. Improvements in diabetic neuropathy and nephropathy after bariatric surgery: a prospective cohort study. Obes Surg. 2021;31(2):554–63.

    Article  PubMed  Google Scholar 

  129. Azmi S, Ferdousi M, Liu Y, Adam S, Iqbal Z, Dhage S, et al. Bariatric surgery leads to an improvement in small nerve fibre damage in subjects with obesity. Int J Obes. 2021;45(3):631–8.

    Article  CAS  Google Scholar 

  130. Brines M, Dunne AN, van Velzen M, Proto PL, Ostenson C-G, Kirk RI, et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med. 2014;20(1):658–66.

    Article  Google Scholar 

  131. Culver DA, Dahan A, Bajorunas D, Jeziorska M, van Velzen M, Aarts LP, et al. Cibinetide improves corneal nerve fiber abundance in patients with sarcoidosis-associated small nerve fiber loss and neuropathic pain. Invest Ophthalmol Vis Sci. 2017;58(6):BIO52–60.

    Article  CAS  PubMed  Google Scholar 

  132. Lewis EJH, Perkins BA, Lovblom LE, Bazinet RP, Wolever TMS, Bril V. Effect of omega-3 supplementation on neuropathy in type 1 diabetes A 12-month pilot trial. Neurology. 2017;88(24):2294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lewis EJH, Lovblom LE, Cisbani G, Chen DK, Bazinet RP, Wolever TMS, et al. Baseline omega-3 level is associated with nerve regeneration following 12-months of omega-3 nutrition therapy in patients with type 1 diabetes. J Diabetes Complicat. 2021;35(3):107798.

    Article  Google Scholar 

  134. Mocan MC, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behçet’s disease as evaluated with in vivo confocal microscopy. Eye. 2009;23(5):1221–7.

    Article  CAS  PubMed  Google Scholar 

  135. Cankaya C, Kalayci BN. Corneal biomechanical characteristics in patients with Behçet disease. Semin Ophthalmol. 2016;31(5):439–45.

    PubMed  Google Scholar 

  136. Bitirgen G, Tinkir Kayitmazbatir E, Satirtav G, Malik RA, Ozkagnici A. In vivo confocal microscopic evaluation of corneal nerve fibers and dendritic cells in patients with Behçet’s disease. Front Neurol. 2018;9(204)

    Google Scholar 

  137. Fleischer M, Lee I, Erdlenbruch F, Hinrichs L, Petropoulos IN, Malik RA, et al. Corneal confocal microscopy differentiates inflammatory from diabetic neuropathy. J Neuroinflammation. 2021;18(1):89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schneider C, Bucher F, Cursiefen C, Fink GR, Heindl LM, Lehmann HC. Corneal confocal microscopy detects small fiber damage in chronic inflammatory demyelinating polyneuropathy (CIDP). J Peripher Nerv Syst. 2014;19(4):322–7.

    Article  PubMed  Google Scholar 

  139. Stettner M, Hinrichs L, Guthoff R, Bairov S, Petropoulos IN, Warnke C, et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol. 2016;3(2):88–100.

    Article  CAS  PubMed  Google Scholar 

  140. Marsovszky L, Németh J, Resch MD, Toldi G, Legány N, Kovács L, et al. Corneal Langerhans cell and dry eye examinations in ankylosing spondylitis. Innate Immun. 2014;20(5):471–7.

    Article  CAS  PubMed  Google Scholar 

  141. Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, et al. In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun. 2013;19(4):348–54.

    Article  PubMed  Google Scholar 

  142. Ramírez M, Martínez-Martínez L-A, Hernández-Quintela E, Velazco-Casapía J, Vargas A, Martínez-Lavín M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin Arthritis Rheum. 2015;45(2):214–9.

    Article  PubMed  Google Scholar 

  143. Erkan Turan K, Kocabeyoglu S, Unal-Cevik I, Bezci F, Akinci A, Irkec M. Ocular surface alterations in the context of corneal in vivo confocal microscopic characteristics in patients with fibromyalgia. Cornea. 2018;37(2):205–10.

    Article  PubMed  Google Scholar 

  144. Oudejans L, He X, Niesters M, Dahan A, Brines M, van Velzen M. Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia. Sci Rep. 2016;6(1):23573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Evdokimov D, Frank J, Klitsch A, Unterecker S, Warrings B, Serra J, et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol. 2019;86(4):504–16.

    Article  CAS  PubMed  Google Scholar 

  146. Planté-Bordeneuve V, Ferreira A, Lalu T, Zaros C, Lacroix C, Adams D, et al. Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP). Neurology. 2007;69(7):693–8.

    Article  PubMed  Google Scholar 

  147. Rousseau A, Cauquil C, Dupas B, Labbé A, Baudouin C, Barreau E, et al. Potential role of in vivo confocal microscopy for imaging corneal nerves in transthyretin familial amyloid polyneuropathy. JAMA Ophthalmol. 2016;134(9):983–9.

    Article  PubMed  Google Scholar 

  148. Bouaich K, Dufrane R, Youssfi A, Slim E, Ehongo A. Corneal confocal microscopy and familial amyloidotic polyneuropathy. J Francais D’ophtalmologie. 2020;43(2):e81.

    Article  CAS  Google Scholar 

  149. Sturm D, Schmidt-Wilcke T, Greiner T, Maier C, Schargus M, Tegenthoff M, et al. Confocal cornea microscopy detects involvement of corneal nerve fibers in a patient with light-chain amyloid neuropathy caused by multiple myeloma: a case report. Case Rep Neurol. 2016;8(2):134–9.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhang Y, Liu Z, Zhang Y, Wang H, Liu X, Zhang S, et al. Corneal sub-basal whorl-like nerve plexus: a landmark for early and follow-up evaluation in transthyretin familial amyloid polyneuropathy. Eur J Neurol. 2021;28(2):630–8.

    Article  CAS  PubMed  Google Scholar 

  151. Freeman R, Gewandter JS, Faber CG, Gibbons C, Haroutounian S, Lauria G, et al. Idiopathic distal sensory polyneuropathy: ACTTION diagnostic criteria. Neurology. 2020;95(22):1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tavakoli M, Marshall A, Pitceathly R, Fadavi H, Gow D, Roberts ME, et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol. 2010;223(1):245–50.

    Article  PubMed  Google Scholar 

  153. Egenolf N, Altenschildesche CMZ, Kreß L, Eggermann K, Namer B, Gross F, et al. Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study. Ther Adv Neurol Disord. 2021;14:17562864211004318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tavakoli M, Marshall A, Banka S, Petropoulos IN, Fadavi H, Kingston H, et al. Corneal confocal microscopy detects small-fiber neuropathy in Charcot–Marie–Tooth disease type 1A patients. Muscle Nerve. 2012;46(5):698–704.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Perini I, Tavakoli M, Marshall A, Minde J, Morrison I. Rare human nerve growth factor-β mutation reveals relationship between C-afferent density and acute pain evaluation. J Neurophysiol. 2016;116(2):425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Politei JM, Durand C, Schenone AB. Small fiber neuropathy in fabry disease: a review of pathophysiology and treatment. J Inborn Errors Metab Screen. 2016;4:2326409816661351.

    Article  Google Scholar 

  157. Bitirgen G, Turkmen K, Malik RA, Ozkagnici A, Zengin N. Corneal confocal microscopy detects corneal nerve damage and increased dendritic cells in Fabry disease. Sci Rep. 2018;8(1):12244.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shetty R, Deshmukh R, Shroff R, Dedhiya C, Jayadev C. Subbasal nerve plexus changes in chronic migraine. Cornea. 2018;37(1):72–5.

    Article  PubMed  Google Scholar 

  159. Pagovich OE, Vo ML, Zhao ZZ, Petropoulos IN, Yuan M, Lertsuwanroj B, et al. Corneal confocal microscopy: neurologic disease biomarker in Friedreich ataxia. Ann Neurol. 2018;84(6):893–904.

    Article  CAS  PubMed  Google Scholar 

  160. Sharma S, Tobin V, Vas PRJ, Rayman G. The LDIFLARE and CCM methods demonstrate early nerve fiber abnormalities in untreated hypothyroidism: a prospective study. J Clin Endocrinol Metabol. 2018;103(8):3094–102.

    Article  Google Scholar 

  161. Kemp HI, Petropoulos IN, Rice ASC, Vollert J, Maier C, Sturm D, et al. Use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol. 2017;135(7):795–800.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Podgorny PJ, Suchowersky O, Romanchuk KG, Feasby TE. Evidence for small fiber neuropathy in early Parkinson’s disease. Parkinsonism Relat Disord. 2016;28:94–9.

    Article  PubMed  Google Scholar 

  163. Anjos R, Vieira L, Sousa A, Maduro V, Alves N, Candelaria P. Peripheral neuropathy in Parkinson disease: an in vivo confocal microscopy study. Acta Ophthalmol. 2014;92

    Google Scholar 

  164. Kass-Iliyya L, Javed S, Gosal D, Kobylecki C, Marshall A, Petropoulos IN, et al. Small fiber neuropathy in Parkinson’s disease: a clinical, pathological and corneal confocal microscopy study. Parkinsonism Relat Disord. 2015;21(12):1454–60.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Misra SL, Kersten HM, Roxburgh RH, Danesh-Meyer HV, McGhee CNJ. Corneal nerve microstructure in Parkinson’s disease. J Clin Neurosci. 2017;39:53–8.

    Article  PubMed  Google Scholar 

  166. Lim SH, Ferdousi M, Kalteniece A, Mahfoud ZR, Petropoulos IN, Malik RA, et al. Corneal confocal microscopy identifies parkinson’s disease with more rapid motor progression. Mov Disord. 2021;36(8):1927–34.

    Article  CAS  PubMed  Google Scholar 

  167. Evangelou N, Konz D, Esiri M, Smith S, Palace J, Matthews P. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain. 2001;124(9):1813–20.

    Article  CAS  PubMed  Google Scholar 

  168. Bitirgen G, Akpinar Z, Malik RA, Ozkagnici A. Use of corneal confocal microscopy to detect corneal nerve loss and increased dendritic cells in patients with multiple sclerosis. JAMA Ophthalmol. 2017;135(7):777–82.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Fernandes D, Luís M, Cardigos J, Xavier C, Alves M, Papoila AL, et al. Corneal subbasal nerve plexus evaluation by in vivo confocal microscopy in multiple sclerosis: a potential new biomarker. Curr Eye Res. 2021;1–8

    Google Scholar 

  170. Mikolajczak J, Zimmermann H, Kheirkhah A, Kadas EM, Oberwahrenbrock T, Muller R, et al. Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density. Mult Scler J. 2017;23(14):1847–53.

    Article  Google Scholar 

  171. Petropoulos IN, Kamran S, Li Y, Khan A, Ponirakis G, Akhtar N, et al. Corneal confocal microscopy: an imaging endpoint for axonal degeneration in multiple sclerosis. Invest Ophthalmol Vis Sci. 2017;58(9):3677–81.

    Article  PubMed  Google Scholar 

  172. Testa V, De Santis N, Scotto R, Pastorino CE, Cellerino M, Olivari S, et al. Neuroaxonal degeneration in patients with multiple sclerosis: an optical coherence tomography and in vivo corneal confocal microscopy study. Cornea. 2020;39(10):1221–6.

    Article  PubMed  Google Scholar 

  173. Khan A, Li Y, Ponirakis G, Akhtar N, Gad H, George P, et al. Corneal immune cells are increased in patients with multiple sclerosis. Translational Vision. Sci Technol. 2021;10(4):19.

    Google Scholar 

  174. Bitirgen G, Akpinar Z, Uca AU, Ozkagnici A, Petropoulos IN, Malik RA. Progressive loss of corneal and retinal nerve fibers in patients with multiple sclerosis: a 2-year follow-up study. Transl Vis Sci Technol. 2020;9(13):37.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ponirakis G, Al Hamad H, Sankaranarayanan A, Khan A, Chandran M, Ramadan M, et al. Association of corneal nerve fiber measures with cognitive function in dementia. Ann Clin Transl Neurol. 2019;6(4):689–97.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Al-Janahi E, Ponirakis G, Al Hamad H, Vattoth S, Elsotouhy A, Petropoulos IN, et al. Corneal nerve and brain imaging in mild cognitive impairment and dementia. J Alzheimers Dis. 2020;77:1533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Khan A, Akhtar N, Kamran S, Ponirakis G, Petropoulos IN, Tunio NA, et al. Corneal confocal microscopy detects corneal nerve damage in patients admitted with acute ischemic stroke. Stroke. 2017;48(11):3012–8.

    Article  PubMed  Google Scholar 

  178. Ferrari G, Grisan E, Scarpa F, Fazio R, Comola M, Quattrini A, et al. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:278.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis N. Petropoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petropoulos, I.N., Malik, R.A. (2022). Corneal Nerves. In: In Vivo Confocal Microscopy in Eye Disease. Springer, London. https://doi.org/10.1007/978-1-4471-7517-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7517-9_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7516-2

  • Online ISBN: 978-1-4471-7517-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics