Skip to main content

Probabilistic Models for Reliability Analysis Using Safe-Life and Damage Tolerance Methods

  • Chapter
  • First Online:
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

  • 2173 Accesses

Abstract

The chapter presents a systematical method for probabilistic analysis using safe-life and damage tolerance models. In particular, the reliability analysis incorporating those models are developed to provide a basic framework for the life prediction given risk constraints and the time-dependent probability of failure estimation. First, the probabilistic modeling is presented, and the uncertainties from model prediction and data are considered. The uncertainties are quantified and are encoded in the probability density functions of model parameters using probabilistic parameter estimation. The propagation of the characterized uncertainties to the result of quantity of interest can be obtained using probabilistic prediction. Next, the reliability model based on the probabilistic modeling is introduced, where the safe-life model and the damage tolerance model are discussed in detail. The life prediction given a certain risk constraint and the time-dependent probability of failure estimation can be made using the developed method. Two examples are employed to demonstrate the overall method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federal Aviation Administration, U.S. Department of Transportation: AC 33.14-1—Damage Tolerance for High Energy Turbine Engine Rotors. Federal Aviation Administration (2001)

    Google Scholar 

  2. Federal Aviation Administration, U.S. Department of Transportation: AC 33.70-2—Damage Tolerance of Hole Features in High-Energy Turbine. Federal Aviation Administration (2009)

    Google Scholar 

  3. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  4. Guan, X., Jha, R., Liu, Y.: Model selection, updating, and averaging for probabilistic fatigue damage prognosis. Struct. Saf. 33(3), 242–249 (2011)

    Article  Google Scholar 

  5. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Series A 186, 453–461 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  6. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087 (1953)

    Article  MATH  Google Scholar 

  7. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kass, R., Raftery, A.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan, X., He, J., Jha, R., Liu, Y.: An efficient analytical Bayesian method for reliability and system response updating based on Laplace and inverse first-order reliability computations. Reliab. Eng. Syst. Saf. 97(1), 1–13 (2012)

    Article  Google Scholar 

  10. Research Triangle Institute: Practical Reliability. Volume 4–Prediction CR-1129. Springfield (1968)

    Google Scholar 

  11. Basquin, O.: The exponential law of endurance tests. Proc. Am. Soc. Test Mater. 10, 625–630 (1910)

    Google Scholar 

  12. Manson, S.: Behavior of materials under conditions of thermal stress Report 1170 Cleveland (1954)

    Google Scholar 

  13. Coffin, L.F. Jr.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Soc. Mech. Eng. 76, 931–950 (1954)

    Google Scholar 

  14. American Society for Testing and Materials: ASTM E739-10(2015)—Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data. ASTM International, West Conshohocken (2015)

    Google Scholar 

  15. Palmgren, A.: The service life of ball bearings (Translation of “Die Lebensdauer von Kugellagern”). Z. Ver. Dtsch. Ing. 68(14), 339–341 (1924). NASA TT F-13460 (1971)

    Google Scholar 

  16. Miner, M.: Cumulative damage in fatigue. J. Appl. Mech. 12, A159–A164 (1945)

    Article  Google Scholar 

  17. Fatemi, A., Yang, L.: Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue 20(1), 9–34 (1998)

    Article  Google Scholar 

  18. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glasserman, P.: Monte Carlo Methods in Financial Engineering, vol. 53. Springer, Berlin (2013)

    MATH  Google Scholar 

  20. Chu, F., Nakayama, M.K.: Confidence intervals for quantiles when applying variance-reduction techniques. ACM Trans. Model. Comput. Simul. 22(2), 10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ministry of Defense: Design and Airworthiness Requirements for Service Aircraft Part 11: Engines 00-970 Part 11 UK (2018)

    Google Scholar 

  22. Harrison, G., Winstone, M.: Modelling and lifing of structural materials for future aeroengine components. Adv. Perform. Mater. 3(3-4), 263–278 (1996)

    Article  Google Scholar 

  23. Cláudio, R., Branco, C., Gomes, E., Byrne, J., Harrison, G., Winstone, M.: Fatigue life prediction and failure analysis of a gas turbine disc using the finite-element method. Fatigue Fract. Eng. Mater. Struct. 27(9), 849–860 (2004)

    Article  Google Scholar 

  24. Department of Defense: Engine Structural Integrity Program (ENSIP), MIL-HDBK-1783B w/CHANGE 2 edn. (WRIGHT-PATTERSON AFB OH, 2004)

    Google Scholar 

  25. Paris, P.C.: The fracture mechanics approach to fatigue. In: Burke, J.J. Reed, N.L. Weiss, V. (eds.) Fatigue—An Interdisciplinary Approach, pp. 107–132. Syracuse Univ. Press (1964)

    Google Scholar 

  26. Wheeler, O.: Spectrum loading and crack growth. J. Basic Eng. Trans. ASME 94, 181–186 (1972)

    Article  Google Scholar 

  27. Paris, P.C., Tada, H., Donald, J.K.: Service load fatigue damage—a historical perspective. Int. J. Fatigue 21, S35–S46 (1999)

    Article  Google Scholar 

  28. Borrego, L., Ferreira, J., Da Cruz, J.P., Costa, J.: Evaluation of overload effects on fatigue crack growth and closure. Eng. Fract. Mech. 70(11), 1379–1397 (2003)

    Article  Google Scholar 

  29. Forman, R., Kearney, V., Engle, R.: Numerical analysis of crack propagation in cyclic-loaded structures. J. Basic Eng. 89(3), 459–464 (1967)

    Article  Google Scholar 

  30. Walker, K.: The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Rosenfeld M. (ed.) Effects of Environment and Complex Load History on Fatigue Life, pp. 1–14. ASTM International, West Conshohochken (1970)

    Google Scholar 

  31. Kujawski, D.: A fatigue crack driving force parameter with load ratio effects. Int. J. Fatigue 23, 239–246 (2001)

    Article  Google Scholar 

  32. Virkler, D., Hillberry, B., Goel, P.: The statistical nature of fatigue crack propagation. J. Eng. Mater. Technol. 101, 148–153 (1979)

    Article  Google Scholar 

  33. International Organization for Standardization: Metallic Materials: Fatigue Testing: Fatigue Crack Growth Method. ISO 12108. ISO (2002)

    Google Scholar 

  34. Guan, X., Zhang, J., Zhou, S., Rasselkorde, E.M., Abbasi, W.: Probabilistic modeling and sizing of embedded flaws in ultrasonic non-destructive inspections for fatigue damage prognostics and structural integrity assessment. NDT E Int. 61, 1–9 (2014)

    Article  Google Scholar 

  35. Moeckel, C.W.: Probabilistic turbine blade thermal analysis of manufacturing variability and toleranced designs Ph.D. Thesis (2006)

    Google Scholar 

  36. Benardos, P., Vosniakos, G.C.: Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot. Comput. Integr. Manuf. 18(5–6), 343–354 (2002)

    Article  Google Scholar 

  37. Cohen, D., Kligerman, Y., Etsion, I.: The effect of surface roughness on static friction and junction growth of an elastic-plastic spherical contact. J. Tribol. 131(2), 021404 (2009)

    Article  Google Scholar 

  38. Singh, V., Raju, P., Namboodhiri, T., Rao, P.R.: Low-cycle fatigue behaviour of a low-alloy high-strength steel. Int. J. Fatigue 12(4), 289–292 (1990)

    Article  Google Scholar 

  39. Gray, D.E. (ed.): American Institute of Physics Handbook. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefei Guan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guan, X., He, J. (2023). Probabilistic Models for Reliability Analysis Using Safe-Life and Damage Tolerance Methods. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-4471-7503-2_48

Download citation

Publish with us

Policies and ethics