Skip to main content

Change-Point-Based Statistical Process Controls

  • Chapter
  • First Online:
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

  • 2011 Accesses

Abstract

In the current era of computers, statistical monitoring of sequential observations is an important research area. In problems such as monitoring the quality of industrial products, health variables, climatological variables, etc., we are often interested in detecting a change in the process distribution in general, not just in mean or variance. We first briefly discuss a few commonly used SPC charts along with relevant references and then present a new chart for univariate continuous processes. Unlike most SPC charts in the literature, it neither assumes any “in-control” probability distribution nor requires any “in-control” Phase I data, and it aims to detect arbitrary distributional change. This chart uses a computationally efficient method to find the possible change-point. Moreover, the proposed chart uses a p-value-based data pruning approach to further increase the efficiency, and it combines the strengths of two different tests of hypotheses, which has a potentially broad application. Numerical simulations and two real-data analyses show that the chart can be used in various monitoring problems when the nature of distributional change is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shewhart, W.A.: Economic Control of Quality of Manufactured Product. Van Nostrand, New York (1931)

    Google Scholar 

  2. Page, E.S.: Continuous inspection schemes. Biometrika 41, 100–114 (1954)

    MathSciNet  MATH  Google Scholar 

  3. Borror, C.M., Montgomery, D.C., Runger, G.C.: Robustness of the EWMA control chart to non-normality. J. Qual. Technol. 31, 309–316 (1999)

    Google Scholar 

  4. Hawkins, D.M., P. Qiu, Kang, C.W.: The changepoint model for statistical process control. J. Qual. Technol. 35, 355–366 (2003)

    Google Scholar 

  5. Zhou, C., Zou, C., Zhang, Y., Wang, Z.: Nonparametric control chart based on change-point model. Stat. Pap. 50, 13–28 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Amin, R., M.R. Reynolds Jr., Bakir, S.T.: Nonparametric quality control charts based on the sign statistic. Commun. Stat. Theory Methods 24, 1597–1623 (1995)

    MATH  Google Scholar 

  7. Hackl, P., Ledolter, J.: A new nonparametric quality control technique. Commun. Stat. Simul. Comput. 21, 423–443 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Albers, W., Kallenberg, W.C.M.: Empirical nonparametric control charts: estimation effects and corrections. J. Appl. Stat. 31, 345–360 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Albers, W., Kallenberg, W.C.M.: CUMIN charts. Metrika 70, 111–130 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Chakraborti, S., van der Laan, P., van de Wiel, M.A.: A class of distribution-free control charts. J. R. Stat. Soc. Ser. C Appl. Stat. 53, 443–462 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Chakraborti, S., Eryilmaz, S., Human, S.W.: A phase II nonparametric control chart based on precedence statistics with runs-type signaling rules. Comput. Stat. Data Anal. 53, 1054–1065 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Chakraborti, S., Eryilmaz, S.: A nonparametric Shewhart-type signed-rank control chart based on runs. Commun. Stat. Simul. Comput. 36, 335–356 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Hawkins, D.M., Deng, Q.: A nonparametric change-point control chart. J. Qual. Technol. 42, 165–173 (2010)

    Google Scholar 

  14. Liu, L., Tsung, F., Zhang, J.: Adaptive nonparametric CUSUM scheme for detecting unknown shifts in location. Int. J. Prod. Res. 52, 1592–1606 (2014)

    Google Scholar 

  15. Mukherjee, A., Chakraborti, S.: A distribution-free control chart for the joint monitoring of location and scale. Qual. Reliab. Eng. Int. 28(3), 335–352 (2012)

    Google Scholar 

  16. Qiu, P., Li, Z.: On nonparametric statistical process control of univariate processes. Technometrics 53, 390–405 (2011)

    MathSciNet  Google Scholar 

  17. Qiu, P., Li, Z.: Distribution-free monitoring of univariate processes. Stat. Prob. Lett. 81, 1833–1840 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Qiu, P., Zhang, J.: On phase II SPC in cases when normality is invalid. Qual. Reliab. Eng. Int. 31, 27–35 (2015)

    Google Scholar 

  19. Qiu, P.: Some perspectives on nonparametric statistical process control. J. Qual. Technol. 50, 49–65 (2018)

    Google Scholar 

  20. Qiu, P., Hawkins, D.M.: A rank based multivariate CUSUM procedure. Technometrics 43, 120–132 (2001)

    MathSciNet  Google Scholar 

  21. Qiu, P., Hawkins, D.M.: A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions. J. R. Stat. Soc. Ser. D Stat. 52, 151–164 (2003)

    MathSciNet  Google Scholar 

  22. Qiu, P.: Distribution-free multivariate process control based on log-linear modeling. IIE Trans. 40, 664–677 (2008)

    Google Scholar 

  23. Yeh, A.B., Lin, D.K.J., Venkatramani, C.: Unified CUSUM charts for monitoring process mean and variability. Qual. Technol. Quant. Manag. 1, 65–86 (2004)

    MathSciNet  Google Scholar 

  24. Hawkins, D.M., Zamba, K.D.: Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics 47, 164–173 (2005)

    MathSciNet  Google Scholar 

  25. Zhang, J., Li, E., Li, Z.: A Cramer-von Mises test-based distribution-free control chart for joint monitoring of location and scale. Comput. Indust. Eng. 110, 484–497 (2017)

    Google Scholar 

  26. Moustakides, G.V.: Optimal stopping times for detecting changes in distributions. Ann. Stat. 14, 1379–1387 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Ross, G.J., Adams, N.M.: Two nonparametric control charts for detecting arbitrary distribution changes. J. Qual. Technol. 44, 102–116 (2012)

    Google Scholar 

  28. Mukherjee, P.S.: On phase II monitoring of the probability distributions of univariate continuous processes. Stat. Pap. 57(2), 539–562 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Hawkins, D.M., Olwell, D.H.: Cumulative Sum Charts and Charting for Quality Improvement. Springer, New York (1998)

    MATH  Google Scholar 

  30. Qiu, P.: Introduction to Statistical Process Control. CRC Press, Taylor & Francis Group, New York (2013)

    Google Scholar 

  31. Li, Z., Qiu, P., Chatterjee, S., Wang, Z.: Using p-values to design statistical process control charts. Stat. Pap. 54, 523–539 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Li, Z., Qiu, P.: Statistical process control using dynamic sampling. Technometrics 56, 325–335 (2014)

    MathSciNet  Google Scholar 

  33. Ross, G.J., Tasoulis, D.K., Adams, N.M.: Nonparametric monitoring of data streams for changes in location and scale. Technometrics 53(4), 379–389 (2011)

    MathSciNet  Google Scholar 

  34. Kenney, J.F., Keeping, E.S.: Mathematics of Statistics, Part Twol. Van Nostrand Company Inc., Princeton (1951)

    MATH  Google Scholar 

  35. Chou, Y.M., Polansky, A.M., Mason, R.L.: Transforming non-normal data to normality in statistical process control. J. Qual. Technol. 30, 133–141 (1998)

    Google Scholar 

  36. Yourstone, S.A., Zimmer, W.J.: Non-normality and the design of control charts for averages. Decis. Sci. 23, 1099–1113 (1992)

    Google Scholar 

  37. Alwan, L.C.: Effects of autocorrelation on control chart performance. Commun. Stat. Theory Methods 21, 1025–1049 (1992)

    MATH  Google Scholar 

  38. Black, R., Smith, J., Wells, S.: The pmpact of Weibull data and autocorrelation on the performance of the Shewhart and exponentially weighted moving average control charts. Int. J. Ind. Eng. Comput. 2, 575–582 (2011)

    Google Scholar 

  39. English, J.R., Lee, S.C., Martin, T.W., Tilmon, C.: Detecting changes in autoregressive processes with X and EWMA charts. IIE Tras. 32, 1103–1113 (2000)

    Google Scholar 

  40. Runger, G.C., Willemains, T.R.: Batch means control charts for autocorrelated data. IIE Tras. 28, 483–487 (1996)

    Google Scholar 

  41. Kim, S.H., Alexopoulos, C., Tsui, K.L., Wilson, J.R.: A distribution-free tabular CUSUM chart for autocorrelated data. IIE Tras. 39, 317–330 (2007)

    Google Scholar 

  42. Runger, G.C., Willemains, T.R.: Model-based and model-free control of autocorrelated processes. J. Qual. Technol. 27, 283–292 (1995)

    Google Scholar 

  43. Johnson, R.A., Bagshaw, M.: The effect of serial correlation on the performance of CUSUM tests. Technometrics 16, 103–112 (1974)

    MathSciNet  MATH  Google Scholar 

  44. Montgomery, D.C., Mastrangelo, C.M.: Some statistical process control methods for autocorrelated data. J. Qual. Technol. 23, 179–204 (1991)

    Google Scholar 

  45. Jiang, W., Tsui, K.L., Woodall, W.: A new SPC monitoring method: the ARMA chart. Technometrics 42, 399–410 (2000)

    Google Scholar 

  46. Hawkins, D.M.: Self-starting cusums for location and scale. Statistician 36, 299–315 (1987)

    Google Scholar 

  47. Hawkins, D.M.: On the distribution and power of a test for a single outlier. S. Afr. Stat. J. 3, 9–15 (1969)

    Google Scholar 

  48. Chatterjee, S., Qiu, P.: Distribution-free cumulative sum control charts using bootstrap-based control limits. Ann. Appl. Stat. 3, 349–369 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Hawkins, D.M., Maboudou-Tchao, E.M.: Self-starting multivariate exponentially weighted moving average control charting. Technometrics 49, 199–209 (2007)

    MathSciNet  Google Scholar 

  50. Sparks, R.S.: CUSUM charts for signalling varying location shifts. J. Qual. Technol. 32, 157–171 (2000)

    Google Scholar 

  51. Gan, F.F.: CUSUM control charts under linear drift. Statistician 41, 71–84 (1992)

    Google Scholar 

  52. Davis, R.B., Woodall, W.H.: Performance of the control chart trend rule under linear drift. J. Qual. Technol. 20, 260–262 (1988)

    Google Scholar 

  53. Costa, A.F.B.: Joint \(\overline {X}\) and R charts with variable parameters. IIE Trans. 30, 505–514 (1998)

    Google Scholar 

  54. Luo, Y., Li, Z., Wang, Z.: AdaptiveCUSUM control chart with variable sampling intervals. Comput. Stat. Data Anal. 53, 2693–2701 (2009)

    MATH  Google Scholar 

  55. Roberts, S.V.: Control chart tests based on geometric moving averages. Technometrics 1, 239–250 (1959)

    Google Scholar 

  56. Crowder, S.V.: Design of exponentially weighted moving average schemes. J. Qual. Technol. 21, 155–162 (1989)

    Google Scholar 

  57. Zhang, N.F.: A statistical control chart for stationary process data. Technometrics 40, 24–38 (1998)

    MathSciNet  MATH  Google Scholar 

  58. Capizzi, G., Masarotto, G.: An adaptive exponentially weighted moving average control chart. Technometrics 45, 199–207 (2003)

    MathSciNet  Google Scholar 

  59. Pascual, F.: EWMA charts for the weibull shape parameter. J. Qual. Technol. 42, 400–416 (2010)

    Google Scholar 

  60. Zhang, L., Chen, G.: EWMA charts for monitoring the mean of censored Weibull lifetimes. J. Qual. Technol. 36, 321–328 (2004)

    Google Scholar 

  61. Borror, C.M., Champ, C.W., Ridgon, S.E.: Poisson EWMA control charts. J. Qual. Technol. 30, 352–361 (1998)

    Google Scholar 

  62. Gan, F.F.: Monitoring Poisson observations using modified exponentially weighted moving average control charts. Commun. Stat. Simul. Comput. 19, 103–124 (1990)

    MathSciNet  MATH  Google Scholar 

  63. Perry, M.B., Pignatiello Jr. J.J.: Estimation of the change point of the process fraction nonconforming in SPC applications. Int. J. Reliab. Qual. Saf. Eng. 12, 95–110 (2005)

    Google Scholar 

  64. Sparks, R.S., Keighley, T., Muscatello, D.: Optimal exponentially weighted moving average (EWMA) plans for detecting seasonal epidemics when faced with non-homogeneous negative binomial counts. J. Appl. Stat. 38, 2165–2181 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Gan, F.F.: EWMA control chart under linear drift. J. Stat. Comput. Simul. 38, 181–200 (1991)

    MATH  Google Scholar 

  66. Gombay, E.: Sequential change-point detection and estimation. Seq. Anal. 22, 203–222 (2003)

    MathSciNet  MATH  Google Scholar 

  67. Hinkley, D.V.: Inference about the change-point in a sequence of random variables. Biometrika 57, 1–17 (1970)

    MathSciNet  MATH  Google Scholar 

  68. Grahamy, M.A., Human, S.W., Chakraborti, S.: A Phase I nonparametric Shewhart-type control chart based on median. J. Appl. Stat. 37, 1795–1813 (2010)

    MathSciNet  MATH  Google Scholar 

  69. Jones-Farmer, L.A., Jordan, V., Champ, C.W.: Distribution-free phase I control charts for subgroup location. J. Qual. Technol. 41, 304–317 (2009)

    Google Scholar 

  70. Ansari, A.R., Bradley, R.A.: Rank-sum tests for dispersions. Ann. Math. Stat. 31(4), 1174–1189 (1960)

    MathSciNet  MATH  Google Scholar 

  71. Anderson, T.W.: On the distribution of the two-sample Cramer-von Mises criterion. Ann. Math. Stat. 33(3), 1148–1159 (1962)

    MathSciNet  MATH  Google Scholar 

  72. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

    MathSciNet  MATH  Google Scholar 

  73. Xiao, Y.: (2012). https://cran.r-project.org/src/contrib/Archive/CvM2SL2Test/

  74. Xiao, Y., Gordon, A., Yakovlev, A.: A C+ + program for the Cramer-von Mises two sample test. J. Stat. Softw. 17(8) (2007)

    Google Scholar 

  75. Mood, A.: On the asymptotic efficiency of certain nonparametric two-sample tests. Ann. Math. Stat. 25, 514–533 (1954)

    MathSciNet  MATH  Google Scholar 

  76. Lepage, Y.: Combination of Wilcoxians and Ansari–Bradley Statistics. Biometrika 58, 213–217 (1971)

    MathSciNet  MATH  Google Scholar 

  77. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2013). http://archive.ics.uci.edu/ml

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Mukherjee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, P.S. (2023). Change-Point-Based Statistical Process Controls. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-4471-7503-2_19

Download citation

Publish with us

Policies and ethics