Skip to main content

Product Durability/Reliability Design and Validation Based on Test Data Analysis

  • Chapter
  • First Online:
Quality and Reliability Management and Its Applications

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Better quality leads to less waste, improved competitiveness, higher customer satisfaction, higher sales and revenues, and eventually higher profitability. Meeting the quality and performance goals requires that decisions be based on reliable tests and quantitative test data analysis. Statistical process control (SPC) is such a fundamental quantitative approach to quality control and improvement. Walter Shewhart in 1920s and 1930s pioneered the use of statistical methods as a tool to manage and control production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASME. (1969). Criteria of the ASME boiler and pressure vessel code for design by analysis in Sections III and VIII, Division 2. New York: The American Society of Mechanical Engineers.

    Google Scholar 

  • ASTM. (1962). ASTM manual on fitting straight lines, STP 313. ASTM International.

    Google Scholar 

  • ASTM. (1975). Chapter 3-planning S-N and response tests, in manual on statistical planning and analysis for fatigue experiments, STP 588. ASTM International.

    Google Scholar 

  • ASTM. (2010). Standard practice for statistical analysis of linear or linearized stress-life (\( S - N \)) and strain-life (\( \varepsilon - N \)) fatigue data. ASTM Designation: E739-10.

    Google Scholar 

  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.

    Google Scholar 

  • BS 7608. (1993). Code for practice for fatigue design and assessment of steel structures.

    Google Scholar 

  • Cashman, G. (2007). A statistical methodology for the preparation of a competing modes fatigue design curve. Journal of Engineering Materials and Technology, 129, 159–168.

    Article  Google Scholar 

  • Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In Proceedings of the International Conference on Electronics and Electrical Engineering (vol. 140, pp. 107–113).

    Google Scholar 

  • Harlow, D. G. (2011). Statistical characterization of bimodal behavior. Acta Materialia, 59, 5048–5053.

    Article  Google Scholar 

  • Jha, S. K., Larsen, J. M. M, & Rosenberger, A. H. (2009). Towards a physics-based description of fatigue variability behavior in probabilistic life-prediction. Engineering Fracture Mechanics, 76, 681–694

    Google Scholar 

  • Lee, Y. L., Pan, J., Hathaway, R., & Barkey, M. (2005). Fatigue testing and analysis: Theory and practice. Oxford: Elsevier, Butterworth-Heinemann. ISBN 978-0-12-385204-5.

    Google Scholar 

  • Lin, S. (2011). Exhaust system reliability evaluation. International Journal of Reliability, Quality and Safety Engineering, 18, 327–340.

    Article  Google Scholar 

  • Link, C. (1985). An equation for one-sided tolerance limits for normal distributions, research paper FPL 458 (pp. 1–4). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Makam, S., Lee, Y. L., & Attibele, P. (2013). Estimation of one-sided lower tolerance limits for a Weibull distribution using the Monte Carlo pivotal simulation technique. SAE International Journal of Materials and Manufacturing, 6(3). doi:10.4271/2013-01-0329.

    Google Scholar 

  • Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. New York: Wiley Series in Probability and Statistics.

    MATH  Google Scholar 

  • Natrella, M. (1966). Experimental statistics, handbook 91. National Bureau of Standards.

    Google Scholar 

  • Nelson, W. (2004). Accelerated testing: Statistical models, test plans, and data analysis. New York: Wiley.

    Google Scholar 

  • Neter, J., Wasserman, W., & Kutner, M. (1990). Applied linear statistical models. Homewood, IL: Richards D. Irwin Inc.

    Google Scholar 

  • Owen, D. (1968). A survey of properties and applications of the non-central t-distribution. Technometrics, 10, 445–472.

    MathSciNet  MATH  Google Scholar 

  • Pham, H. (Ed.). (2006). Springer handbook of engineering statistics. London: Springer.

    MATH  Google Scholar 

  • Rice, R. C. (Ed.). (1997). SAE Fatigue design handbook (3rd ed., AE-22). Warrendale, PA: Society of Automotive Engineers, Inc.

    Google Scholar 

  • Ryan, B. F., Joiner, B. L., & Ryan, T. A. (1985). Minitab handbook (2nd ed.). Boston: Duxbury Press.

    Google Scholar 

  • Shen, C. L., Wirsching, P. H., & Cashman, G. T. (1996). Design curve to characterize fatigue strength. Journal of Engineering Materials and Technology, 118, 535–541.

    Article  Google Scholar 

  • Smith, A. F. M., & Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling-resampling perspective. The American Statistician, 46, 84–88.

    MathSciNet  Google Scholar 

  • Wei, Z., Lin, B., Luo, L., Yang, F., & Dmitri, K. (2012a). Accelerated durability testing and data analysis for products with multiple failure mechanisms. International Journal of Reliability, Quality and Safety Engineering, 19, 1240003.

    Article  Google Scholar 

  • Wei, Z., Yang, F., Luo, L., Avery, K., & Dong, P. (2012b). Fatigue life assessment of welded structures with the linear traction stress analysis approach. SAE International Journal of Materials and Manufacturing, 5, 183–194.

    Article  Google Scholar 

  • Wei, Z., Yang, F., Lin, B., & Harlow, D. G. (2012c). Failure modes analysis of fatigue S-N test data with small sample size. In Proceedings of the 18th ISSAT International Conference on Reliability and Quality in Design, 26–28 July 2012, Boston, Massachusetts, USA.

    Google Scholar 

  • Wei, Z., Yang, F., Maleki, S., & Nikbin, K. (2012d). Equilibrium based curve fitting method for test data with nonuniform variance. In Proceedings of the ASME 2013 Pressure Vessels & Piping Division Conference, PVP2012-78234, 15–19 July 2012, Toronto, Canada.

    Google Scholar 

  • Wei, Z., Dogan, B., Luo, L., Lin, B., & Dmitri, K. (2013a). Design curve construction based on tolerance limit concept. Journal of Engineering Materials and Technology, 135, 014501.

    Google Scholar 

  • Wei, Z., Luo, L., Ellinghaus, K., Pieszkalla, M., Harlow, D.G., & Nikbin, K. (2013b). Statistical and probabilistic analysis of thermal-fatigue test data generated using V-shape specimen testing method. In Proceedings of the ASME 2013 Pressure Vessels & Piping Division Conference, PVP2013-97628, 14–18 July 2013, Paris, France.

    Google Scholar 

  • Wei, Z., Luo, L., Lin, B., Konson, D., & Nikbin, K. (2013c). Design curve construction based on Monte Carlo simulation. In Proceedings of the ASME 2013 Pressure Vessels & Piping Division Conference, PVP2013-97631, 14–18 July 2013, Paris, France.

    Google Scholar 

  • Wei, Z., Yang, F., Cheng, H., Maleki, S., & Nikbin, K. (2013d) Engineering failure data analysis:revisiting the standard linear approach. Engineering Failure Analysis, 30, 27–42.

    Google Scholar 

  • Yang, G. (1994). Optimum constant-stress accelerated life-test plans. IEEE Transactions on Reliability, 43, 575–581.

    Article  Google Scholar 

  • Yang, G. (2007). Life cycle reliability engineering. New Jersey: Wiley.

    Book  Google Scholar 

  • Yang, G., & Jin, L. (1994). Best compromise test plans for Weibull distributions with different censoring times. Quality and Reliability Engineering International, 10, 411–415.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. Kamran Nikbin, Prof. D. Gary Harlow, Mr. Kay Ellinghaus, Mr. Markus Pieszkalla, Mr. Marek Rybarz, Dr. Pierre Olivier Santacreu, Mr. Maleki Shervin, Mr. Herry Cheng, Mr. Tim Gardner, Mr. Joesph Berkemeier, and Mr. Richard Voltenburg for their helpful comments and contributions to works summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Wei, Z., Luo, L., Yang, F., Lin, B., Konson, D. (2016). Product Durability/Reliability Design and Validation Based on Test Data Analysis. In: Pham, H. (eds) Quality and Reliability Management and Its Applications. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-6778-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6778-5_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6776-1

  • Online ISBN: 978-1-4471-6778-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics