Skip to main content

Part of the book series: Health Informatics ((HI))

Abstract

In the 1950s, the transistor replaced the vacuum tubes that had empowered Eniac, Colossus, and other early computers in the 1940s. In the 1960s and 1970s, computing moved from slow, expensive mainframes to faster mini- and microcomputers and multiprocessors, empowered by chip technology and integrated circuits, and leveraged by increasingly sophisticated operating systems and programming languages. By the 1980s, commercially available programs were able to perform commonly needed computational functions. With the growth of computer capabilities and computer storage capacities, database technology and database management systems gave rise to the development of distributed database systems. Efficient computer-stored databases proved essential to many medical computing applications, making vast amounts of data available to users. Over time computer applications became more numerous and complex, with software claiming a larger fraction of computing costs. Display terminals and clinical workstations offered graphic displays and supported structured data entry and reporting. Devices, such as the mouse, light pens, touch screens, and input technologies, such as speech and handwriting recognition, were developed to ease the user’s tasks and foster physician acceptance. Over the same span of time, computer communications evolved as well, moving from copper wire to fiber optic cable and, most recently, to wireless systems. The Internet and the World Wide Web became the main modes used for local and global communications. By the 2010s laptops replaced desktop computers, and tablets and smart phones were commonplace in health care.

Author was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht K. RFID tag-you’re it. Sci Am. 2008;299:72–7.

    Article  PubMed  Google Scholar 

  2. Allen SI, Otten M. The telephone as a computer input-output terminal for medical information. JAMA. 1969;208:673–9.

    Article  CAS  PubMed  Google Scholar 

  3. Amsterdamn J. Computer languages of the future. Pop Comput. 1983; 136–51.

    Google Scholar 

  4. Appleton DS. The technology of data integration. Datamation. 1985;31:106–16.

    Google Scholar 

  5. Ash SR, Mertz SL, Ulrich DK. The computerized notation system: a portable, self-contained system for entry of physicians’ and nurses’ notes. J Clin Eng. 1983;8:147–56.

    Article  CAS  PubMed  Google Scholar 

  6. Augarten S. Bit by bit: an illustrated history of computers. New York: Ticknor & Fields; 1984.

    Google Scholar 

  7. Ausman RK, Culliton EH, Graham TD, Slawson MR, Kehoe EJ, et al. Simplified input and output devices for patient data handling. Ann NY Acad Sci. 1969;161:749–55.

    Article  CAS  PubMed  Google Scholar 

  8. Bacon G. Software. Science (New York, NY). 1982;215:775–9.

    Article  CAS  Google Scholar 

  9. Ball MJ. An overview of total medical information systems. Methods Inf Med. 1971;10:73–82.

    CAS  PubMed  Google Scholar 

  10. Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992.

    Google Scholar 

  11. Barnett GO. Computer-stored ambulatory record (COSTAR): US Department of Health, Education, and Welfare, Public Health Service, Health Resources Administration, National Center for Health Services Research; 1976.

    Google Scholar 

  12. Barnett GO, Souder D, Beaman P, Hupp J. MUMPS–an evolutionary commentary. Comput Biomed Res. 1981;14:112–8.

    Article  CAS  PubMed  Google Scholar 

  13. Barnett GO. Massachusetts general hospital computer system. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974.

    Google Scholar 

  14. Barnett GO. The modular hospital information system. In: Stacy RW, Waxman BD, editors. Computers in biomedical research. New York: Academic; 1974. p. 243–5.

    Google Scholar 

  15. Barnett GO, Greenes RA, Grossman JH. Computer processing of medical text information. Methods Inf Med. 1969;8:177–82.

    CAS  PubMed  Google Scholar 

  16. Barret V. Best small companies. Forbes. 2011;188:82–92.

    Google Scholar 

  17. Barsalou T, Wiederhold G. A cooperative hypertext interface to relational databases. Proc SCAMC. 1989;383.

    Google Scholar 

  18. Bender E. Presenting the future: what benefits will the OS/2 presentation manager bring and when? PC World. 1989;7:134–6.

    Google Scholar 

  19. Bennett WL. Terminal selection for an on-line hospital system. Proceedings of 24th national conference 1969. New York: ACM Pub P-69; 1969: p. 58–66.

    Google Scholar 

  20. Bergeron BP. Voice recognition: an enabling technology for modern health care? Proc AMIA Symp. 1996;802.

    Google Scholar 

  21. Berners-Lee T, Cailliau R, Luotonen A. The World Wide Web. Comm ACM. 1994;37:907–12.

    Article  Google Scholar 

  22. Bernstein J. Profiles: The analytic engine-I. The New Yorker. 1963 (October 19); p. 58–96.

    Google Scholar 

  23. Bernstein J. Profiles: The analytic engine-II. The New Yorker. 1963 (October 26); p. 54–108.

    Google Scholar 

  24. Blaine GJ. Networks and distributed systems: a primer. Proc MEDINFO. 1983; 1118–21.

    Google Scholar 

  25. Blois MS. The physician’s personal workstation. MD Comput. 1984;2:22–6.

    Google Scholar 

  26. Blois MS, Henley RR. Strategies in the planning of hospital information systems. J D’Infomatique Med. 1971;89–98.

    Google Scholar 

  27. Blum B. Design methodology. In: Orthner HF, Blum BI, editors. Implementing health care information systems. New York: Springer; 1989. p. 277–95.

    Chapter  Google Scholar 

  28. Blum BI. A history of computers. In: Blum BI, editor. Clinical information systems. New York: Springer; 1986. p. 1–32.

    Google Scholar 

  29. Blum BI. Programming languages. In: Blum BI, editor. Clinical information systems. New York: Springer; 1986. p. 112–49.

    Google Scholar 

  30. Blum BI. A data model for patient management. Proc MEDINFO. 1983;83:748–51.

    Google Scholar 

  31. Blum BI, Orthner HF. The MUMPS programming language. In: Orthner HF, Blum BI, editors. Implementing health care information systems. New York: Springer; 1989.

    Chapter  Google Scholar 

  32. Blum BI, Orthner HF. Clinical information systems. New York: Springer; 1986.

    Book  Google Scholar 

  33. Blum BI. Information systems for patient care. New York: Springer; 1984.

    Book  Google Scholar 

  34. Blum BI. An information system for developing information systems. AFIPS Natl Comp Conf. 1983;52:743–52. Arlington, VA: AFIPS Press.

    Google Scholar 

  35. Blum RL. Displaying clinical data from a time-oriented database. Comput Biol Med. 1981;11:197–210.

    Article  CAS  PubMed  Google Scholar 

  36. Blumenthal L, Waterson J. The use of a microcomputer as a front-end processor for data base management systems on large computers. Proc SCAMC. 1981;303–6.

    Google Scholar 

  37. Bonner P, Gralla P. OS/2 building for the future. PC Comput. 1988;1:76–88.

    Google Scholar 

  38. Boraiko AA. The chip: electronic mini marvel that is changing your life. Natl Geogr. 1982;162:421–56.

    Google Scholar 

  39. Boraiko AA. Fiber optics: harnessing light by a thread. Natl Geogr. 1979;156:516.

    Google Scholar 

  40. Borowitz SM, Wyatt JC. The origin, content, and workload of e-mail consultations. JAMA. 1998;280:1321–4.

    Article  CAS  PubMed  Google Scholar 

  41. Bott E. Inside windows 4.0. PC Comput. 1994;7:124–39.

    Google Scholar 

  42. Bowie J. Methods of implementation of the MUMPS global data-base. Inform Health Soc Care. 1979;4:151–64.

    Article  CAS  Google Scholar 

  43. Brandt CA, Morse R, Matthews K, Sun K, Deshpande AM, et al. Metadata-driven creation of data marts from an EAV-modeled clinical research database. Int J Med Inform. 2002;65:225–41.

    Article  PubMed  Google Scholar 

  44. Brazier MA. From calculating machines to computers and their adoption by the medical sciences. Med Hist. 1973;17:235–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Brigham B. CP/M (computer operating system) summary guide for version 1.4 and 2.0. Glastonbury: Rosetta Stone; 1980.

    Google Scholar 

  46. Broida R. What features will smartphones have? Pop Sci. 2011;279:88.

    Google Scholar 

  47. Bronzino JD. Computerization concepts in the clinical laboratory. In: Bronzino JD, editor. Computer applications in patient care. Menlo Park: Addison-Wesley; 1982. p. 117–37.

    Google Scholar 

  48. Brown J, Vallbona C. A new patient record system using the laser card. Proc SCAMC. 1988;602–5.

    Google Scholar 

  49. Bryan M. The year of the data base. Pers Comput. 1988;12(1):100–9.

    Google Scholar 

  50. Bulkeley WM. Who built the first PC? Wall Str J. 1986 (May 14);31.

    Google Scholar 

  51. Bull BS, Korpman RA. The clinical laboratory computer system. Arch Pathol Lab Med. 1980;104:449–51.

    Google Scholar 

  52. Burks AR, Burks AW. The first electronic computer: the Atanasoff story. Ann Arbor: University of Michigan Press; 1989.

    Google Scholar 

  53. Burks AW, Burks AR. The ENIAC: first general-purpose electronic computer. 1981. MD Comput. 1994;12:206–12.

    Google Scholar 

  54. Caulfield B. The Steve Jobs economy. Forbes. 2011;188:16.

    Google Scholar 

  55. Caulfield B. Is Android vs. Apple like PC vs Mac? Forbes. 2011;188:44.

    Google Scholar 

  56. Chamberlin DD, Boyce RF. SEQUEL: a structured English query language. Proc 1974 ACM SIGFIDET (now SIGMOD) workshop on data description, access and control. 1974;249–64.

    Google Scholar 

  57. Chase HS, Kaufman DR, Johnson SB, Mendonca EA. Voice capture of medical residents’ clinical information needs during an inpatient rotation. JAMIA. 2009;16:387–94.

    PubMed Central  PubMed  Google Scholar 

  58. Williams BT, Chen TT, Elston J, et al. The variable phrase keyboard and the clinical report. In: Hinman EJ, editor. Advanced medical systems: the 3rd century. Miami: Symposia Specialists Medical Books; 1977. p. 127–34.

    Google Scholar 

  59. Chen TT, Williams BT, Levy AH. Graphically enhanced medical information system network. In: Hinman EJ, editor. Advanced medical systems: the 3rd century. Miami: Symposia Specialists; 1977. p. 135–44.

    Google Scholar 

  60. Chen TT, Williams BT, Levy AH. A depository health-computer network. Inform Health Soc Care. 1976;1:167–78.

    Article  Google Scholar 

  61. Childs BW. Bedside terminals: status and the future. Healthc Comput Commun. 1988;5:12–4.

    CAS  PubMed  Google Scholar 

  62. Chiodo C, Hopkins B, Miles G. 101 essential apps for Android, Blackberry, and iPhone. PC World. 2010;28:91–8.

    Google Scholar 

  63. Chute CC, Crowson DL, Bluntrock JD, Crowson DL. Medical information retrieval and WWW browsers at Mayo. Proc AMIA. 1995;68–73.

    Google Scholar 

  64. Cimino JJ, Socratous SA, Grewal R. The informatics superhighway: prototyping on the World Wide Web. Proc SCAMC. 1995;111–5.

    Google Scholar 

  65. Clark WA, Molnar CE. The LINC: a description of the laboratory instrument computer. Ann NY Acad Sci. 1964;115:653–68.

    Article  CAS  PubMed  Google Scholar 

  66. Codd EF. Extending the database relational model to capture more meaning. ACM Trans Database Syst (TODS). 1979;4:397–434.

    Article  Google Scholar 

  67. Codd EF. Further normalizations of the data base relational model. In: Rustin R, editor. Data base systems. Englewood Cliffs: Prentice-Hall; 1972. p. 33–64.

    Google Scholar 

  68. Codd EF. A relational model of data for large shared data banks. Commun ACM. 1970;13:377–87.

    Article  Google Scholar 

  69. Codd EF, Codd SB, Salley CT. Providing OLAP (On-Line Analytical Processing) to user-analysts: an IT mandate. Technical report. San Jose, CA: Codd and Associates; 1993.

    Google Scholar 

  70. Cole WG. Integrality and meaning: essential and orthogonal dimensions of graphical data display. Proc SCAMC. 1993;404–8.

    Google Scholar 

  71. Collen M. A guide matrix for technological system evaluation. J Med Syst. 1978;2:249–54.

    Article  Google Scholar 

  72. Collen MF. History of MHTS. In: Collen MF, editor. Multiphasic health services. New York: Wiley; 1978. p. 1–45.

    Google Scholar 

  73. Coltri A. Databases in health care. In: Lehmann HP, editor. Aspects of electronic health record systems. New York: Springer; 2006. p. 225–51.

    Google Scholar 

  74. Conlan RR. Understanding computers. Alexandria: Time-Life Books; 1986.

    Google Scholar 

  75. Connelly D. Communicating laboratory results effectively; the role of graphical displays. Proc AAMSI Cong. 1983;113–5.

    Google Scholar 

  76. Connolly TM, Begg CE. Database management systems: a practical approach to design. 2nd edition. New York: Addison-Wesley; 1999.

    Google Scholar 

  77. Consumer Reports. IBM clones. Consumer reports 1989 buying guide. 1989;53:308–12.

    Google Scholar 

  78. Cook JS. Communication by optical fiber. Sci Am. 1973;229:28–35.

    Article  Google Scholar 

  79. Cox JR. Special purpose digital computers in biology. In: Stacy RW, Waxman BD, editors. Computers in biomedical research. New York: Academic; 1965. p. 67–99.

    Google Scholar 

  80. Crawford FR. Introduction to data processing. Englewood Cliffs: Prentice-Hall; 1968.

    Google Scholar 

  81. Crecine JP. The next generation of personal computers. Science. 1986;231:935–43.

    Article  CAS  PubMed  Google Scholar 

  82. Cringely RX. Accidental empires: how the boys of Silicon Valley make their millions, battle foreign competition, and still can’t get a date. Reading: Addison-Wesley; 1992.

    Google Scholar 

  83. Davis M. The chip at 35. Pers Comput. 1983;7:127–31.

    Google Scholar 

  84. Davis RM. Evolution of computers and computing. Science. 1977;195:1096–102.

    Article  CAS  PubMed  Google Scholar 

  85. Dawson J. A family of models. Byte. 1989;14:277–86.

    Google Scholar 

  86. Denning PJ, Brown RI. Operating systems. Sci Am. 1984;251:94–130.

    Article  Google Scholar 

  87. Dinu V, Nadkarni P. Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. Int J Med Inform. 2007;76:769–79.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Downs SM, Walker MG, Blum RL. Automated summarization of on-line medical records; 1986.

    Google Scholar 

  89. Drexhage MG, Moynihan CT. Infared optical fibers. Sci Am. 1989;259:110–6.

    Article  Google Scholar 

  90. Eamos C. A computer perspective. Cambridge, MA: Harvard University Press; 1973.

    Google Scholar 

  91. ECRI. Clinical information systems improve with new standard. Health Tech Trends. 1989;1:3–6.

    Google Scholar 

  92. Edelson BI, Pollack L. Satellite communications. Science. 1977;195:1125–33.

    Article  CAS  PubMed  Google Scholar 

  93. Edelstein SZ. Clinical research databases: a microscopic look. Proc SCAMC. 1981;279–80.

    Google Scholar 

  94. Edge RA, Marciniak TA. The ADA environment. Proc SCAMC. 1984;882–5.

    Google Scholar 

  95. Ekberg J, Ericson L, Timpka T, Eriksson H, Nordfeldt S, Hanberger L, et al. Web 2.0 systems supporting childhood chronic disease management. J Med Syst. 2010;34:107–17.

    Article  PubMed  Google Scholar 

  96. Ellison S. The dreamphone. Fortune. 2010;162:128.

    Google Scholar 

  97. Elting L, Lynn A, Bodey G. Human/computer interfaces: a randomized trial of data entry and editing formats. Proc SCAMC. 1988;459–62.

    Google Scholar 

  98. Enriquez J. The glory of big data. Pop Sci. 2011;279:31–5.

    Google Scholar 

  99. Esterhay Jr R, Foy JL, Lewis TL. Hospital information systems: approaches to screen definition: comparative anatomy of the PROMIS, NIH and Duke systems. Proc SCAMC. 1982;903–11.

    Google Scholar 

  100. Feigenbaum EA, McCorduck P. The fifth generation: artificial intelligence and Japan’s computer challenge to the world. Reading: Addison Wesley; 1984.

    Google Scholar 

  101. Fenster JM. COBOL. Invent Technol. 2010;25:48–50.

    Google Scholar 

  102. Fisher JA, Monahan T. Tracking the social dimensions of RFID systems in hospitals. Int J Med Inform. 2008;77:176–83.

    Article  PubMed  Google Scholar 

  103. Francis B. PC back-ups optical understudy. Datamation. 1988;34:57–60.

    Google Scholar 

  104. Frawley WJ, Piatetsky-Shapiro G, Matheus CJ. Knowledge discovery in databases: an overview. AI Mag. 1992;13:57.

    Google Scholar 

  105. Friedel R. Transistor. Invent Technol. 2010;25:4344.

    Google Scholar 

  106. Friedman BA. Informating, not automating, the medical record. J Med Syst. 1989;13:221–5.

    Article  CAS  PubMed  Google Scholar 

  107. Friedman RB. Computers in medicine. In: Eden HS, Eden M, editors. Microcomputers in patient care. Park Ridge: Noyes Medical Publications; 1981. p. 90–5.

    Google Scholar 

  108. Friedman RB, Gustafson DH. Computers in clinical medicine, a critical review. Comput Biomed Res. 1977;10:199–204.

    Article  CAS  PubMed  Google Scholar 

  109. Fung J, Mann S. Computer vision signal processing on graphics processing units. Proc IEEE-ICASSP. 2004;5:93–6.

    Google Scholar 

  110. Gates B. The 25th birthday of BASIC. Byte. 1989;14:268–76.

    Google Scholar 

  111. Glazener TT, McDonald CJ. Putting doctors behind bars. MD Comput. 1986;3:29–33.

    CAS  PubMed  Google Scholar 

  112. Gleick J. The unsplittable bit. Pop Sci. 2011;279:58.

    Google Scholar 

  113. Glowniak JV. Medical resources on the internet. Ann Intern Med. 1995;123:123–31.

    Article  CAS  PubMed  Google Scholar 

  114. Goldstine HH. The computer from Pascal to von Neumann. Princeton: Princeton University Press; 1972.

    Google Scholar 

  115. Goldwein JW, Benjamin I. Internet-based medical information: time to take charge. Ann Intern Med. 1995;123:152–3.

    Article  CAS  PubMed  Google Scholar 

  116. Gomes L. Attack of the freebies. Forbes 2010;185:42.

    Google Scholar 

  117. Gomez E, Demetriades JE, Babcock D, Peterson J. The department of veterans affairs optical patient card workstation. Proc SCAMC. 1991;378–80.

    Google Scholar 

  118. Greenes RA, Pappalardo AN, Marble CW, Barnett GO. Design and implementation of a clinical data management system. Comput Biomed Res. 1969;2:469–85.

    Article  CAS  PubMed  Google Scholar 

  119. Greenes RA. Medical computing in the 1980s: operating systems and programming language issues. J Med Syst. 1983;7:295–9.

    Article  CAS  PubMed  Google Scholar 

  120. Greenes RA, Barnett GO, Klein SW, Robbins A, Prior RE. Recording, retrieval and review of medical data by physician-computer interaction. N Engl J Med. 1970;282:307–15.

    Article  CAS  PubMed  Google Scholar 

  121. Grossman JH, Barnett GO, Koepsell TD, Nesson HR, Dorsey JL, et al. An automated medical record system. JAMA. 1973;224:1616–21.

    Article  CAS  PubMed  Google Scholar 

  122. Grossman L. The beast with a billion eyes. Time Magazine, Jan 30, 2012.

    Google Scholar 

  123. Gullo K. Steady as she goes. Datamation. 1987;33:37.

    Google Scholar 

  124. Gustin S. Wireless windfall. Time. 2012;179:11.

    Google Scholar 

  125. Hafner K, Lyon M. Where wizards stay up late: the origins of the internet. New York: Simon & Schuster; 1996.

    Google Scholar 

  126. Hammond WE. GEMISCH. A minicomputer information support system. Proc IEEE. 1973;61:1575–83.

    Article  Google Scholar 

  127. Hammond WE, Lloyd SC. The role and potential of minicomputers. In: Haga E, Brennan R, et al., editors. Computer techniques in biomedicine and medicine. Philadelphia: Auerbach Publishers; 1973. p. 332–4.

    Google Scholar 

  128. Hammond WE, Stead WW, Straube MJ. Planned networking for medical information systems. Proc SCAMC. 1985;727–31.

    Google Scholar 

  129. Haney JP. Introduction to local area networks for microcomputers. Proc SCAMC. 1984;779–85.

    Google Scholar 

  130. Hartzband P, Groopman J. Untangling the web: patients, doctors, and the internet. N Engl J Med. 2010;362:1063–6.

    Article  CAS  PubMed  Google Scholar 

  131. Hassig L. Understanding computers, memory and storage. Richmond: Time-Life Books; 1987.

    Google Scholar 

  132. Helvey W, Brdlik M, Peterkin K. Online medical databases–1985: status and prognosis. Healthc Comput Commun. 1985;2:28.

    CAS  PubMed  Google Scholar 

  133. Hodges A. Alan Turing: the enigma. New York: Simon and Schuster; 1983.

    Google Scholar 

  134. Hodges P. LAN growth surges. Datamation. 1989;36:32–6.

    Google Scholar 

  135. Hornyak T. RFID powder. Sci Am. 2008;298:68–71.

    Article  CAS  Google Scholar 

  136. Hughes S. Bedside terminals: CliniCom. MD Comput. 1988;5(1):22–8.

    CAS  PubMed  Google Scholar 

  137. Ingalls DH. Design principles behind smalltalk. BYTE Mag. 1981;6:286–98.

    Google Scholar 

  138. James JS. What is FORTH? A tutorial introduction. Byte. 1980;5:100–26.

    Google Scholar 

  139. Jennings DM, Landweber LH, Fuchs IH, Farber DJ, Adrion WR. Computer networking for scientists. Science. 1986;231:943–50.

    Article  CAS  PubMed  Google Scholar 

  140. Johnson KB, Rosenbloom ST. Computer-based documentation. In: Lehmann HP, Roderer N, Abbott P, editors. Aspects of electronic health record systems. New York: Springer; 2006. p. 308–28.

    Google Scholar 

  141. Johnson RL. Economic benefits of hospital system automation. US Healthc. 1989;6:38–40.

    Google Scholar 

  142. Johnson S. More and more of Moore’s law. Intel is venturing beyond the co-founders old prediction with new chip technology. San Jose Mercury News. 2011.

    Google Scholar 

  143. Johnson SB. Generic data modeling for clinical repositories. JAMIA. 1996;3:328–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Johnson SB, Chatziantoniou D. Extended SQL for manipulating clinical warehouse data. Proc AMIA Symp. 1999;819.

    Google Scholar 

  145. Kahane SN, Goldberg HR, Roth HP, Lenhard RE, Johannes RS. A multimodal communications interface for endoscopy data collection with automated text report generation. Proc MEDINFO. 1986;26–30.

    Google Scholar 

  146. Kahn RE. Networks for advanced computing. Sci Am. 1987;257:136–43.

    Article  Google Scholar 

  147. Kay A. Computer software. Sci Am. 1984;251:53–9.

    Article  Google Scholar 

  148. Kay A. Microelectronics and the personal computer. Sci Am. 1977;237:230–44.

    Article  Google Scholar 

  149. Kernighan BW, Ritchie DM. The state of C. Byte. 1988;13:205–10.

    Google Scholar 

  150. Kildall G. CP/M: a family of 8-and 16-bit operating systems. Byte. 1981;6:216–46.

    Google Scholar 

  151. Kimbleton SR, Schneider GM. Computer communication networks: approaches, objectives, and performance considerations. ACM Comput Surv (CSUR). 1975;7:129–73.

    Article  Google Scholar 

  152. Kornfeld WA. Pattern-directed invocation languages. Byte. 1979;4:34–48.

    Google Scholar 

  153. Kowitt B. One hundred million Android fans can’t be wrong. Fortune. 2011;164:93–7.

    Google Scholar 

  154. Lacson R, Long W. Natural language processing of spoken diet records. Proc AMIA Symp. 2006;454–8.

    Google Scholar 

  155. Larson J. The ins and outs of CP/M. Byte. 1981;6:268–82.

    Google Scholar 

  156. Larson R, Long W. Natural language processing of spoken diet records. Proc AMIA Ann Symp. 2006;454–8.

    Google Scholar 

  157. Ledley RS. A personal view of sowing the seeds. In: Blum BI, Duncan KA, editors. A history of medical informatics. New York: ACM Press/Addison-Wesley; 1990. p. 84–110.

    Google Scholar 

  158. Ledley RS. Introduction to digital computers and automatic programming. Biomed Electron IRE Trans. 1961;8:158–67.

    Article  CAS  Google Scholar 

  159. Leibowitz MR. Profile: founding father Robert Noyce. PC/Comput. 1989;2:94–100.

    Google Scholar 

  160. Levine RD. Supercomputers. Sci Am. 1982;246:118–35.

    Article  Google Scholar 

  161. Lev-Ram M. Intel’s (latest) mobile comeback. Fortune. 2012;164:33–5.

    Google Scholar 

  162. Lev-Ram M. Intel’s sunny vision for the cloud. Fortune. 2011;164:95–100.

    Google Scholar 

  163. Levy AH. Recent developments in microcomputers in medicine. Proc AAMSI. 1984;341–5.

    Google Scholar 

  164. Lewis HR, Papadimitriou CH. The efficiency of algorithms. Sci Am. 1978;238:96–109.

    Article  Google Scholar 

  165. Lewkowicz J, Walters RF. Design of an advanced MUMPS programming environment. Proc SCAMC. 1986;336–43.

    Google Scholar 

  166. Liedtke M. Google search for knowledge. Bay Area News Group. 2012; C.1.2.

    Google Scholar 

  167. Lindberg D. The invention of the internet protocol suite. Personal communication. 2011.

    Google Scholar 

  168. Lindberg D. Electronic retrieval of clinical data. J Med Educ. 1965;40:753–9.

    CAS  PubMed  Google Scholar 

  169. Lindberg D, Humphreys BL. Medicine and health on the internet: the good, the bad, and the ugly. JAMA. 1998;280:1303–4.

    Article  CAS  PubMed  Google Scholar 

  170. Linowes JS. It’s an attitude. Byte. 1988;13:219–27.

    Google Scholar 

  171. Lockwood R. UNIX. Pers Comput. 1990;14:79–86.

    Google Scholar 

  172. London JW. A computer solution to clinical and research computing needs. Proc SCAMC. 1985;722–6.

    Google Scholar 

  173. Mackintosh AR. Dr. Atanasoff’s computer. Sci Am. 1988;259:72–8.

    Article  Google Scholar 

  174. McDonald C, Wiederhold G, Simborg DW, et al. A discussion of the draft proposal for data exchange standards. Proc IEEE. 1984;406–13.

    Google Scholar 

  175. McDonald CJ. The medical gopher: a microcomputer based physician work station. Proc SCAMC. 1984;453–9.

    Google Scholar 

  176. McGath G. A look at LISP. Byte. 1977;2:156–61.

    Google Scholar 

  177. McLatchey J, Barnett GO, McDonnell G, Piggins J, Zielstorff RD, et al. The capturing of more detailed medical information in COSTAR. Proc SCAMC. 1983;329–32.

    Google Scholar 

  178. Mediati N, Niccolai J. Microsoft introduces windows 8. PC World. 2011;15–6.

    Google Scholar 

  179. Meeks BN. Dialing up 1990. Byte. 1989;14:273–8.

    Google Scholar 

  180. Mies G. Best cell phones by carriers. PC World. 2010;28:38–40.

    Google Scholar 

  181. Miles WD. A history of the National Library of Medicine; the nation’s treasury of medical knowledge. Washington, DC: US Government Printing Office; 1982.

    Google Scholar 

  182. Millard M. Dragon targets small practices with new speech technology. Health Care IT News, Jan 30, 2011.

    Google Scholar 

  183. Miller MJ. Apple’s Macintosh. Pop Comput. 1984;3.

    Google Scholar 

  184. Minh CC, Chung J, Kozyrakis C, Olukotun K. STAMP: Stanford transactional applications for multi-processing. Workload Characterization. IISWC 2008. Proc IEEE Int Symp. 2008;35–46.

    Google Scholar 

  185. Mitroff S. Intel’s first microprocessor turns 40. PC World. 2012;30:18.

    Google Scholar 

  186. Molnar CE, Clark WA. Development of the LINC. In: Blum BI, Duncan KA, editors. A history of medical informatics. New York: ACM Press/Addison-Wesley Pub. Co; 1990. p. 119–40.

    Google Scholar 

  187. Monahan ML, Kiley M, Patterson C. Bar code technology: its use within a nursing information system. Proc MEDINO. 1986;26–30.

    Google Scholar 

  188. Moore CH. The evolution of FORTH, an unusual language. Byte. 1980;5:76–92.

    Google Scholar 

  189. Mulroy J. Web 101: new site-design tools are coming. PC World. 2010;28:18.

    Google Scholar 

  190. Myer EP. A time-sharing multi-unit computing system. Ann NY Acad Sci. 1966;128:738–45.

    Article  CAS  PubMed  Google Scholar 

  191. Nedkarni PM. Management of evolving map data: data structures and algorithms based on the framework map. Genomics. 1995;30(3):565–73.

    Article  Google Scholar 

  192. Nadkarni PM, Marenco L. Easing the transition between attribute-value databases and conventional databases for scientific data. Proc AMIA Symp. 2001;483–7.

    Google Scholar 

  193. Nadkarni PM, Brandt CM, Marenco L. WebEAV: automatic metadata-driven generation of web interfaces to entity-attribute-value databases. JAMIA. 2000;7:343–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G, Miller P. Organization of heterogeneous scientific data using the EAV/CR representation. JAMIA. 1999;6:478–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Nadkarni PM, Brandt C, Frawley S, Sayward FG, Einbinder R, et al. Managing attribute-value clinical trials data using the ACT/DB client-server database system. JAMIA. 1998;5:139–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Nedkarni PM, Cheung K-H. SQLGEN: an environment for rapid client–server database development. Comput Biomed Res. 1995;28:479–9.

    Article  Google Scholar 

  197. Newbower RS, Cooper JB, Edmondson JE, Maier WR. Graphics-tablet for data-entry in computer-assisted anesthesia record-keeping. Proc SCAMC. 1981;139–42.

    Google Scholar 

  198. Newell A, Sproull RF. Computer networks: prospects for scientists. Science. 1982;215:843–52.

    Article  CAS  PubMed  Google Scholar 

  199. Nickerson RS. Man-computer interaction: a challenge for human factors research. Ergonomics. 1969;12:501–17.

    Article  CAS  PubMed  Google Scholar 

  200. Noyce RN. Microelectronics. Sci Am. 1977;237:62–9.

    Article  Google Scholar 

  201. O’Malley C. The new operating systems. Pers Comput. 1986;10:181–5.

    Google Scholar 

  202. Orthner HE. New communication technologies for hospital information systems. In: Bakker AR, Ball MJ, Scherrer JR, Willem JL, editors. Towards new hospital information systems. Amsterdam: North-Holland; 1988. p. 203–12.

    Google Scholar 

  203. Orthner HF. Medical informatics: quo vadis? MD Comput. 1992;9(2):14–5.

    CAS  PubMed  Google Scholar 

  204. Orthner HF, Scherrer JR, Dahlen R. Sharing and communicating health information: summary and recommendations. Int J Biomed Comput. 1994;34:303–18.

    Article  CAS  PubMed  Google Scholar 

  205. Pearlman D. How to choose an operating system. Pop Comput. 1984;3:148–50.

    Google Scholar 

  206. Pearson WR. Programming languages II. MD Comput. 1985;2:11–22.

    CAS  PubMed  Google Scholar 

  207. Pendse N. OLAP omnipresent. Byte. 1998;23:1–2.

    Google Scholar 

  208. Pesce J. Bedside terminals: MedTake. MD Comput. 1988;5:16.

    CAS  PubMed  Google Scholar 

  209. Pierce JR. Electronics: past, present, and future. Science. 1977;195:1092–5.

    Article  CAS  PubMed  Google Scholar 

  210. Pierce JR. Communications. Sci Am. 1972;227:31–41.

    Article  CAS  PubMed  Google Scholar 

  211. Pogue D. Talk to the machine. Sci Am. 2010;303:40.

    Article  PubMed  Google Scholar 

  212. Poon EG, Keohane CA, Yoon CS, Ditmore M, Bane A, et al. Effect of bar-code technology on the safety of medication administration. N Engl J Med. 2010;362:1698–707.

    Article  CAS  PubMed  Google Scholar 

  213. Pournelle J. The operating system jungle. Pop Comput. 1984;81–6.

    Google Scholar 

  214. Pournelle J. BASIC, computer languages and computer adventures. Byte. 1980;5:222–32.

    Google Scholar 

  215. Prokosch HU, Pryor TA. Intelligent data acquisition in order entry programs. Proc SCAMC. 1988;454–8.

    Google Scholar 

  216. Rapp W. Fourth generation languages. Comput Healthc. 1985;6:38–40.

    CAS  PubMed  Google Scholar 

  217. Reid-Green K. History of computers: the IBM 704. Byte. 1979;4:190–2.

    Google Scholar 

  218. Robinson P. A world of workstations. Byte. 1987;12:251–60.

    Google Scholar 

  219. Robson D. Object-oriented software systems. Byte. 1981;6:74–86.

    Google Scholar 

  220. Rosch WL. Calculated RISC. PC Comput. 1988;1:172–88.

    Google Scholar 

  221. Rosen S. Electronic computers: a historical survey. ACM Comput Surv (CSUR). 1969;1:7–36.

    Article  Google Scholar 

  222. Rubin C. Workstations: the personal computer alternative. Pers Comput. 1988;12:124–33.

    Google Scholar 

  223. Runyan L. The datamation hall of fame. Datamation. 1987;33:56.

    Google Scholar 

  224. Schatz W. United States computer research’s basic dilemma. Datamation. 1989;35:44–7.

    Google Scholar 

  225. Schenker WJ. Physician-generated clinical records using a menu-driven, touch-panel microcomputer. Proc SCAMC. 1980;3:1405.

    Google Scholar 

  226. Schenthal JE. Clinical concepts in the application of large scale electronic data processing. In: Proc 2nd IBM medical symposium. New York: IBM; 1960.

    Google Scholar 

  227. Schenthal JE, Sweeney JW, Nettleton WJ, Yoder RD. Clinical application of electronic data processing apparatus: III. System for processing of medical records. JAMA. 1963;186:101–5.

    Article  CAS  PubMed  Google Scholar 

  228. Schipma PB, Cichocki EM, Ziemer SM. Medical information on optical disc. Proc SCAMC. 1987;732.

    Google Scholar 

  229. Schultz EK, Brown RW. The interactive medical record: a hypermedia prototype. Proc SCAMC. 1988;15–7.

    Google Scholar 

  230. Schultz EK, Brown RW. Graphmaker: a step in the design of a universal interface for a hospital information system. Proc SCAMC. 1989;675–8.

    Google Scholar 

  231. Sciences NN. Academies of calling all frequencies. NAS Infocus. 2010;10:1–2.

    Google Scholar 

  232. Seed JC. Restricted data formats. Ann N Y Acad Sci. 1969;161:484–526.

    Article  CAS  PubMed  Google Scholar 

  233. Segaller S. Nerds: a brief history of the internet. New York: TV Books, LLC; 1999.

    Google Scholar 

  234. Seltzer L. Software returns to its source. PC Mag. 1999;18:166–78.

    Google Scholar 

  235. Serwer A. Android calling. Fortune. 2011;164:8.

    Google Scholar 

  236. Shatkay H, Chen N, Blostein D. Integrating image data into biomedical text categorization. Bioinformatics. 2006;22:e446–53.

    Article  CAS  PubMed  Google Scholar 

  237. Shifman M, Jelovsek FR. Prolog: a language for programming medical logic. MD Comput. 1988;5:36–40.

    CAS  PubMed  Google Scholar 

  238. Shortliffe EH. Networking health: learning from others, taking the lead. Health Aff (Millwood). 2000;19:9–22.

    Article  CAS  Google Scholar 

  239. Shortliffe EH. The next generation internet and health care: a civics lesson for the informatics community. Proc AMIA Ann Symp. 1998;8–14.

    Google Scholar 

  240. Siekert RG, Hisey BL, Williams PE, Uber GT. A video terminal light-pen device for ordering medical tests. JAMA. 1968;206:351–6.

    Article  CAS  PubMed  Google Scholar 

  241. Simborg DW. Local area networks: why? what? what if? MD Comput. 1984;1:10–20.

    CAS  PubMed  Google Scholar 

  242. Singer SJ. Visual display terminals in a hospital information system (HIS). Comput Biomed Res. 1970;3:510–20.

    Article  CAS  PubMed  Google Scholar 

  243. Slack WV, Hicks GP, Reed CE, Van Cura LJ. A computer-based medical-history system. N Engl J Med. 1966;274:194–8.

    Article  CAS  PubMed  Google Scholar 

  244. Slack WV, Peckham BM, Van Cura LJ, Carr WF. A computer-based physical examination system. JAMA. 1967;200:224–8.

    Article  CAS  PubMed  Google Scholar 

  245. Smith MB, Burke KE, Torgerson JS, Stollerman JE, Kern DC, et al. Logical and efficient conversation between patients and the telephone linked computer system. Proc SCAMC. 1988;463–7.

    Google Scholar 

  246. Spivey BE, O’Neill J. The use of optical scanning as a means of computer input in medicine. JAMA. 1969;208:665–72.

    Article  CAS  PubMed  Google Scholar 

  247. Stahl JE, Holt JK, Gagliano NJ. Understanding performance and behavior of tightly coupled outpatient systems using RFID: initial experience. J Med Syst. 2011;35:291–7.

    Article  PubMed  Google Scholar 

  248. Stead WW. A quarter-century of computer-based medical records. MD Comput. 1989;6:74–81.

    CAS  PubMed  Google Scholar 

  249. Stefanchik MF. Point-of-care information systems: improving patient care. Comput Healthc. 1987;8:78.

    CAS  PubMed  Google Scholar 

  250. Straube MJ, Hammond WE, Stead WW. The GEMISCH programming language. In: Orthner HF, Blum B, editors. Implementing health care information systems. New York: Springer; 1989. p. 384–95.

    Chapter  Google Scholar 

  251. Streveler DJ, Harrison PB. Judging visual displays of medical information. MD Comput. 1985;2:26–38.

    CAS  PubMed  Google Scholar 

  252. Stroustrup B. C++ users await next release. Byte. 1989;14:11–2.

    Google Scholar 

  253. Stroustrup B. A better C. Byte. 1988;13:215–8.

    Google Scholar 

  254. Taylor R. The computer: concept, development and problem environment. J Chronic Dis. 1966;19:333–48.

    Article  CAS  PubMed  Google Scholar 

  255. Taylor RW, Frank RL. CODASYL data-base management systems. ACM Comput Surv (CSUR). 1976;8:67–103.

    Article  Google Scholar 

  256. Tello ER. Between man and machine. Byte. 1988;13:288–93.

    Google Scholar 

  257. Terdiman J. Ambulatory care computer systems in office practice: a tutorial. Proc AMIA. 1982;195–201.

    Google Scholar 

  258. Tesler L. The smalltalk environment. Byte. 1981;6:90–147.

    Google Scholar 

  259. Tesler LG. Programming languages. Sci Am. 1984;251:70–8.

    Article  Google Scholar 

  260. The Economist. Tanks in the cloud. The Economist. December 29, 2010 (print version). Available at http://www.economist.com/node/17797794. Accessed August 9, 2015.

  261. Titus JA. The impact of microcomputers on automated instrumentation in medicine. Advance in hardware and integrated circuits. Proc SCAMC. 1977;99–100.

    Google Scholar 

  262. Tolchin SG, Barta W. Local network and distributed processing issues in the Johns Hopkins Hospital. J Med Syst. 1986;10:339–53.

    Article  CAS  PubMed  Google Scholar 

  263. Tolchin SG, Arsenlev M, Barta WL, Kuzmak PM, Bergan E, et al. Integrating heterogeneous systems using local network technologies and remote procedure call protocols. Proc SCAMC. 1985;748–9.

    Google Scholar 

  264. Toole BA. Ada, the enchantress of numbers. Mill Valley: Strawberry Press; 1992.

    Google Scholar 

  265. Toong HD, Gupta A. Personal computers. Sci Am. 1982;247:86–107.

    Article  Google Scholar 

  266. Tropp HS. The 20th anniversary meeting of the association for computing machinery: 30 August 1967. Ann Hist Comput. 1987;9:249–70.

    Article  Google Scholar 

  267. Valenta AL, Wigger U. Q-methodology: definition and application in health care informatics. JAMIA. 1997;4:501–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Van Orange C, Schindler R, Valeri L. Study on the requirements and options for radio frequency identification (RFID) applications in health care. RAND Europe Rep. 2009;1–131.

    Google Scholar 

  269. VanName M, Catchings B. SQL-a database language sequel to Dbase. Byte. 1989;14:175–82.

    Google Scholar 

  270. Venkataramanan M. The database of databases. Pop Sci. 2011;279:56.

    Google Scholar 

  271. Verity J. The shifting shape of SNA. Datamation. 1985;93–112.

    Google Scholar 

  272. Walters RF. File structures for database management systems. MD Comput. 1987;5:30–41.

    Google Scholar 

  273. Walters RF. Developments and implementation of microcomputer MUMPS systems. J Med Syst. 1983;7:457–68.

    Article  CAS  PubMed  Google Scholar 

  274. Walters RF. Development of a micro MUMPS users group for the exchange of clinical applications. Proc SCAMC. 1980;3:1393–8.

    Google Scholar 

  275. Walters RF, Bowie J, Wilcox JC, Dayhoff RE, Reynolds SW. MUMPS primer, revised: an introduction to the interactive programming system of the future. MUMPS Users’ Group; 1983.

    Google Scholar 

  276. Warner HR. Data sources. In: Warner HR, editor. Computer-assisted medical decision-making. New York: Academic Press; 1979. p. 6–101.

    Google Scholar 

  277. Wasserman AI. Software development methodologies and the user software engineering methodology. Proc SCAMC. 1982;891–3.

    Google Scholar 

  278. Weinberger D. Data, data everywhere. A special report on managing information. The Economist. 2010;3–19.

    Google Scholar 

  279. Weiner JL. The logical record keeper-prolog on the IBM. BYTE. 1984;9:125.

    Google Scholar 

  280. Wiederhold G. Databases, IEE computer, centennial issue. 1984; 17:211–23.

    Google Scholar 

  281. Wiederhold G. Databases for health care. In: Lindberg DA, Reichertz PL, editors. Lecture notes in medical informatics. New York: Springer; 1981. p. 1–75.

    Google Scholar 

  282. Wiederhold G. Modeling databases. Inf Sci. 1983;29:115–26.

    Article  Google Scholar 

  283. Wiederhold G. Databases for ambulatory care. Proc AMIA Symp. 1982;79–85.

    Google Scholar 

  284. Wiederhold G, Walker MG, Blum RL. Acquisition of medical knowledge from medical records. Proc Benutzer-gruppenseminar Med Syst. 1987;213–4.

    Google Scholar 

  285. Wiederhold G. Database technology in health care. J Med Syst. 1981;5:175–96.

    Article  CAS  PubMed  Google Scholar 

  286. Wiersema M, McDonald CJ. Low-priced microcomputer voice-input boards. MD Comput. 1985;3:16–22.

    Google Scholar 

  287. Willard OT. Barcodes in a medical office computer system. Proc SCAMC. 1985;72–6.

    Google Scholar 

  288. Williams BT, Johnson R. Graphic displays. In: Williams BT, editor. Computer aids to clinical decisions, vol. II. Boca Raton: CRC Press; 1982. p. 170–8.

    Google Scholar 

  289. Williams BT, Foote CF, Galassie C, Schaeffer RC. Augmented physician interactive medical record. Proc MEDINFO. 1989;89:779–83.

    Google Scholar 

  290. Williams BT, Johnson RL, Chen TT. PLATO-based medical information system. Proc 1st Illinois conf medical information systems. Urbana, IL 1974;145–9.

    Google Scholar 

  291. Williams BT, Chen TT, Johnson R, Schultz DF. A terminal-orientated clinical record system. Biomed Comput. 1976;311–21.

    Google Scholar 

  292. Williams BT, Chen TT, Elston J, et al. The ariable phrase keyboard and the clinical report. In: Hinman EJ, editor. Advanced medical systems: the 3rd century. Miami, FL: Symposia Specialists Medical Books; 1977:127–34.

    Google Scholar 

  293. Williams BT, Chen TT, Schultz DF, Moll JD, Flood JR, Elston J. PLATO-based medical information system: variable keyboards. Proc 2nd Conf Med Inf Syst. 1975;56–61.

    Google Scholar 

  294. Williams BT. Computer aids to clinical decisions. Boca Raton, FL: CRC Press; 1982.

    Google Scholar 

  295. Williams G. A closer look at the IBM personal computer. Byte. 1982;7:36–66.

    Google Scholar 

  296. Williams M. Superfast wireless gigabit spec published. PC World. 2010;28:18.

    Article  Google Scholar 

  297. Wingfield N. After iPhone sales bonanza in China, Apple’s profit nearly doubles. New York Times. 2012;B1–2.

    Google Scholar 

  298. Wolpin S. The wild, wonderful, and wacky world of cell phones. Invent Technol. 2010;25:50–6.

    Google Scholar 

  299. Wolpin S, Winter I. Social networking. Invent Technol. 2010;25:52.

    Google Scholar 

  300. Wolverton T. Hoping Apple proves me wrong with iPad 3. Bay Area News Group. 2012.

    Google Scholar 

  301. Womble ME, Wilson SD, Keiser HN, Tworek ML. An intelligent terminal for access to a medical database. Proc SCAMC. 1978;517–23.

    Google Scholar 

  302. Wortham J, Wingfield N. Latest PC systems mimic mobile OS. Bay Area News Group. 2012; D2.

    Google Scholar 

  303. Zelingher J. Exploring the internet. MD Comput. 1995;12:100–8. 144.

    CAS  PubMed  Google Scholar 

  304. Zuboff S. In the age of the smart machine: the future of work and power. New York: Basic; 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casimir A. Kulikowski Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Collen, M.F., Kulikowski, C.A. (2015). The Development of Digital Computers. In: Collen, M., Ball, M. (eds) The History of Medical Informatics in the United States. Health Informatics. Springer, London. https://doi.org/10.1007/978-1-4471-6732-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6732-7_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6731-0

  • Online ISBN: 978-1-4471-6732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics