Skip to main content

Environmental Epigenetics and Obesity: Evidences from Animal to Epidemiologic Studies

  • Chapter
Environmental Epigenetics

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Obesity is a major health problem today that grows into a global epidemic. Obesity has been associated with increased risk of many non-communicable diseases, such as type-2 diabetes mellitus, hypertension, cardiovascular diseases and cancer. There are multiple factors that cause obesity. Accelerated lifestyle, fast food, unhealthy eating habits and sedentary lifestyle have been considered as the major risk factors of overweight and obesity development. It has been suggested that genetic factors may play an important part of the onset of obesity. However, the observed rapid rise of obesity worldwide has occurred too rapidly to be solely explained by fixed genomic variation in combination with adult lifestyle factors. Epigenetic modifications can be programmed in the intrauterine environment and can be modulated by environmental influences including diet besides genetic influences. It has been widely accepted that genes together with adult lifestyle factors determine the risk of developing non-communicable diseases. Animal study models have demonstrated that epigenetic alternations early in life lead to obesity later in adult life. Natural human experiment, such as Dutch famine study, also suggested that peri-conceptional and peri-natal nutrient deficiency resulted in overweight or obesity later in life. The results from epidemiologic studies are less consistent. This chapter reviewed the evidence from animal studies, ecologic evaluation, to epidemiologic studies to assess whether there is a causal relationship between epigenetics modification from diet and environmental exposure and obesity. Challenges and opportunities to improve the future study design in human are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar SL, Lehmann U (2014) DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 20:7894–7913

    PubMed Central  PubMed  Google Scholar 

  • Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    PubMed Central  PubMed  Google Scholar 

  • Baker JL, Olsen LW, Sorensen TI (2008) Weight at birth and all-cause mortality in adulthood. Epidemiology 19:197–203

    PubMed  Google Scholar 

  • Barker DJ (2007) Obesity and early life. Obes Rev 8(Suppl 1):45–49

    PubMed  Google Scholar 

  • Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    CAS  PubMed  Google Scholar 

  • Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    CAS  PubMed  Google Scholar 

  • Barker M, Robinson S, Osmond C, Barker DJ (1997) Birth weight and body fat distribution in adolescent girls. Arch Dis Child 77:381–383

    CAS  PubMed  Google Scholar 

  • Barnes SK, Ozanne SE (2011) Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol 106:323–336

    CAS  PubMed  Google Scholar 

  • Berends LM, Ozanne SE (2012) Early determinants of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 26:569–580

    CAS  PubMed  Google Scholar 

  • Berry RJ, Li Z, Erickson JD et al (1999) Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341:1485–1490

    CAS  PubMed  Google Scholar 

  • Bhandari R, Xiao J, Shankar A (2013) Urinary bisphenol A and obesity in U.S. children. Am J Epidemiol 177:1263–1270

    PubMed Central  PubMed  Google Scholar 

  • Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brons C, Jacobsen S, Nilsson E et al (2010) Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab 95:3048–3056

    PubMed  Google Scholar 

  • Burdge GC, Lillycrop KA (2014) Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiol Behav 134:119–122

    CAS  PubMed  Google Scholar 

  • Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA (2007a) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97:435–439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA (2007b) Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 97:1036–1046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burdge GC, Lillycrop KA, Jackson AA, Gluckman PD, Hanson MA (2008) The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and post-weaning fat consumption. Br J Nutr 99:540–549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA (2009) Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 139:1054–1060

    CAS  PubMed  Google Scholar 

  • Byberg L, McKeigue PM, Zethelius B, Lithell HO (2000) Birth weight and the insulin resistance syndrome: association of low birth weight with truncal obesity and raised plasminogen activator inhibitor-1 but not with abdominal obesity or plasma lipid disturbances. Diabetologia 43:54–60

    CAS  PubMed  Google Scholar 

  • Byun HM, Nordio F, Coull BA et al (2012) Temporal stability of epigenetic markers: sequence characteristics and predictors of short-term DNA methylation variations. PLoS One 7:e39220

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL (2007) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44

    PubMed Central  Google Scholar 

  • Carwile JL, Michels KB (2011) Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res 111:825–830

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen DF, Hu YH, Yang F et al (2004) Mother’s and child’s methylenetetrahydrofolate reductase C677T polymorphism is associated with preterm delivery and low birth weight. Beijing Da Xue Xue Bao 36:248–253, Journal of Peking University Health sciences

    CAS  PubMed  Google Scholar 

  • Cheng TF, Choudhuri S, Muldoon-Jacobs K (2012) Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol JAT 32:643–653

    CAS  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    CAS  PubMed  Google Scholar 

  • Cong R, Jia Y, Li R et al (2012) Maternal low-protein diet causes epigenetic deregulation of HMGCR and CYP7alpha1 in the liver of weaning piglets. J Nutr Biochem 23:1647–1654

    CAS  PubMed  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl):2393S–2400S

    CAS  PubMed  Google Scholar 

  • Cox GF, Burger J, Lip V et al (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cox LA, Comuzzie AG, Havill LM et al (2013) Baboons as a model to study genetics and epigenetics of human disease. ILAR J Natl Res Counc Inst Lab Anim Resour 54:106–121

    CAS  Google Scholar 

  • Crawford K, Flick R, Close L et al (2002) Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 22:5887–5896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 229:988–995

    CAS  Google Scholar 

  • DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delage B, Dashwood RH (2008) Dietary manipulation of histone structure and function. Annu Rev Nutr 28:347–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doherty L, Bromer J, Zhou Y, Aldad T, Taylor H (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(Suppl 1):S7–S11

    PubMed Central  PubMed  Google Scholar 

  • Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307

    CAS  PubMed  Google Scholar 

  • Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 70:47–56

    CAS  PubMed  Google Scholar 

  • Dyer JS, Rosenfeld CR (2011) Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review. Semin Reprod Med 29:266–276

    CAS  PubMed  Google Scholar 

  • Eng DS, Lee JM, Gebremariam A, Meeker JD, Peterson K, Padmanabhan V (2013) Bisphenol A and chronic disease risk factors in US children. Pediatrics 132:e637–e645

    PubMed Central  PubMed  Google Scholar 

  • Feil R (2006) Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res 600:46–57

    CAS  PubMed  Google Scholar 

  • Ferrari A, Fiorino E, Giudici M et al (2012) Linking epigenetics to lipid metabolism: focus on histone deacetylases. Mol Membr Biol 29:257–266

    CAS  PubMed  Google Scholar 

  • Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9:181–194

    CAS  PubMed  Google Scholar 

  • Forsen T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJ (1997) Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ 315:837–840

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fraser A, Tilling K, Macdonald-Wallis C et al (2010) Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121:2557–2564

    PubMed Central  PubMed  Google Scholar 

  • Garratt ES, Vickers MH, Gluckman PD, Hanson MA, Burdge GC, Lillycrop KA (2013) Tissue-specific 5′ heterogeneity of PPARalpha transcripts and their differential regulation by leptin. PLoS One 8:e67483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gemma C, Sookoian S, Alvarinas J et al (2009) Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity (Silver Spring) 17:1032–1039

    CAS  Google Scholar 

  • Gerken T, Girard CA, Tung YC et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure – function relationships and the therapeutic potential for cancer. Curr Med Chem 17:1756–1768

    CAS  PubMed  Google Scholar 

  • Gilbert ER, Liu D (2012) Epigenetics: the missing link to understanding beta-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics 7:841–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glanville T, Yates Z, Ovadia L, Walker JJ, Lucock M, Simpson NA (2006) Fetal folate C677T methylenetetrahydrofolate reductase gene polymorphism and low birth weight. J Obstet Gynaecol 26:11–14

    CAS  PubMed  Google Scholar 

  • Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60:1528–1534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodman M, Lakind JS, Mattison DR (2014) Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Crit Rev Toxicol 44:151–175

    CAS  PubMed  Google Scholar 

  • Goyette P, Sumner JS, Milos R et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7:195–200

    CAS  PubMed  Google Scholar 

  • Goyette P, Frosst P, Rosenblatt DS, Rozen R (1995) Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet 56:1052–1059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Sabat P, Valladares L (2005) Environmental signaling and evolutionary change: can exposure of pregnant mammals to environmental estrogens lead to epigenetically induced evolutionary changes in embryos? Evol Dev 7:341–350

    CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna CM, Sabat P, Valdovinos FS, Valladares LE, Clark SJ (2008) Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiol 8:17

    PubMed Central  PubMed  Google Scholar 

  • Hall JG, Solehdin F (1998) Folate and its various ramifications. Adv Pediatr 45:1–35

    PubMed  Google Scholar 

  • Hao L, Ma J, Zhu J et al (2007) High prevalence of hyperhomocysteinemia in Chinese adults is associated with low folate, vitamin B-12, and vitamin B-6 status. J Nutr 137:407–413

    CAS  PubMed  Google Scholar 

  • Heerwagen MJ, Miller MR, Barbour LA, Friedman JE (2010) Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 299:R711–R722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hennig B, Toborek M, Bachas LG, Suk WA (2004) Emerging issues: nutritional awareness in environmental toxicology. J Nutr Biochem 15:194–195

    CAS  PubMed  Google Scholar 

  • Hennig B, Ettinger AS, Jandacek RJ et al (2007) Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. Environ Health Perspect 115:493–495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herbst AL, Cole P, Colton T, Robboy SJ, Scully RE (1977) Age-incidence and risk of diethylstilbestrol-related clear cell adenocarcinoma of the vagina and cervix. Am J Obstet Gynecol 128:43–50

    CAS  PubMed  Google Scholar 

  • Herzog E, Galvez J, Roks A et al (2013) Tissue-specific DNA methylation profiles in newborns. Clin Epigenetics 5:8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13:679–692

    CAS  PubMed  Google Scholar 

  • Huang WY, Su LJ, Hayes RB et al (2012) Prospective study of genomic hypomethylation of leukocyte DNA and colorectal cancer risk. Cancer Epidemiol Biomark Prev 21:2014–2021

    CAS  Google Scholar 

  • Huxley R, Owen CG, Whincup PH et al (2007) Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr 85:1244–1250

    CAS  PubMed  Google Scholar 

  • Infinium Human Methylation 450 Beadchip (2012) The ideal solution for affordable, large sample-sized genome-wide DNA methylation studies. http://res.illumina.com/documents/products/datasheets/datasheet_humanmethylation450.pdf. Accessed 15 Jan 2014

  • Janssen BG, Byun HM, Cox B et al (2014) Variation of DNA methylation in candidate age-related targets on the mitochondrial-telomere axis in cord blood and placenta. Placenta 35:665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen ET, Longnecker MP (2014) Pharmacologic sex hormones in pregnancy in relation to offspring obesity. Obesity (Silver Spring) 22:2406–2412

    CAS  Google Scholar 

  • Jimenez-Chillaron JC, Diaz R, Martinez D et al (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263

    CAS  PubMed  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    CAS  PubMed  Google Scholar 

  • Karoutsou E, Polymeris A (2012) Environmental endocrine disruptors and obesity. Endocr Regul 46:37–46

    CAS  PubMed  Google Scholar 

  • Keri RA, Ho S-M, Hunt PA, Knudsen KE, Soto AM, Prins GS (2007) An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol 24:240–252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim KC, Friso S, Choi SW (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 20:917–926

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laitinen J, Jaaskelainen A, Hartikainen AL et al (2012) Maternal weight gain during the first half of pregnancy and offspring obesity at 16 years: a prospective cohort study. BJOG 119:716–723

    CAS  PubMed  Google Scholar 

  • Lakind JS, Goodman M, Mattison DR (2014) Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol 44:121–150

    CAS  PubMed  Google Scholar 

  • Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ (1992) Early growth and abdominal fatness in adult life. J Epidemiol Community Health 46:184–186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawlor DA, Ronalds G, Clark H, Smith GD, Leon DA (2005) Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: findings from the Aberdeen Children of the 1950s prospective cohort study. Circulation 112:1414–1418

    PubMed  Google Scholar 

  • Lee Y, Yu X, Gonzales F et al (2002) PPAR alpha is necessary for the lipopenic action of hyperleptinemia on white adipose and liver tissue. Proc Natl Acad Sci U S A 99:11848–11853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    CAS  PubMed  Google Scholar 

  • Leon DA, Lithell HO, Vagero D et al (1998) Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–1929. BMJ 317:241–245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis SJ, Leary S, Davey Smith G, Ness A (2009) Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype. Br J Nutr 102:493–496

    CAS  PubMed  Google Scholar 

  • Li S, Hursting SD, Davis BJ, McLachlan JA, Barrett JC (2003) Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann N Y Acad Sci 983:161–169

    CAS  PubMed  Google Scholar 

  • Lillycrop KA, Burdge GC (2012) Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 26:667–676

    PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    CAS  PubMed  Google Scholar 

  • Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97:1064–1073

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100:278–282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lokk K, Modhukur V, Rajashekar B et al (2014) DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15:R54

    PubMed Central  PubMed  Google Scholar 

  • Lucock M, Yates Z (2005) Folic acid – vitamin and panacea or genetic time bomb? Nat Rev Genet 6:235–240

    CAS  PubMed  Google Scholar 

  • Martinez JA, Cordero P, Campion J, Milagro FI (2012) Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 71:276–283

    CAS  PubMed  Google Scholar 

  • Martinez-Zamudio R, Ha HC (2011) Environmental epigenetics in metal exposure. Epigenetics 6:820–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mas S, Lafuente MJ, Crescenti A et al (2007) Lower specific micronutrient intake in colorectal cancer patients with tumors presenting promoter hypermethylation in p16(INK4a), p4(ARF) and hMLH1. Anticancer Res 27:1151–1156

    CAS  PubMed  Google Scholar 

  • Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39

    PubMed  Google Scholar 

  • Milagro FI, Campion J, Garcia-Diaz DF, Goyenechea E, Paternain L, Martinez JA (2009) High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 65:1–9

    CAS  PubMed  Google Scholar 

  • Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34:782–812

    CAS  PubMed  Google Scholar 

  • Morgan JN (1999) Effects of processing of heavy metal content of foods. Adv Exp Med Biol 459:195–211

    CAS  PubMed  Google Scholar 

  • Naaz A, Yellayi S, Zakroczymski MA et al (2003) The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144:3315–3320

    CAS  PubMed  Google Scholar 

  • Newbold RR, Padilla-Banks E, Jefferson WN (2009) Environmental estrogens and obesity. Mol Cell Endocrinol 304:84–89

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholas LM, Rattanatray L, MacLaughlin SM et al (2013) Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 27:3786–3796

    CAS  PubMed  Google Scholar 

  • Nohr EA, Vaeth M, Baker JL, Sorensen T, Olsen J, Rasmussen KM (2008) Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 87:1750–1759

    CAS  PubMed  Google Scholar 

  • NTP (National Toxicology Program) (2004) Report on carcinogens, 11th edn. U.S. Department of Health and Human Services, Public Health Service, Research Triangle Park

    Google Scholar 

  • Odom DT, Zizlsperger N, Gordon DB et al (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief (82):1–8

    Google Scholar 

  • Ogino S, Nosho K, Irahara N et al (2009) Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J Clin Oncol 27:4591–4598

    PubMed Central  PubMed  Google Scholar 

  • Okosun IS, Liao Y, Rotimi CN, Dever GE, Cooper RS (2000) Impact of birth weight on ethnic variations in subcutaneous and central adiposity in American children aged 5–11 years. A study from the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord 24:479–484

    CAS  PubMed  Google Scholar 

  • Palou A, Bonet ML (2013) Challenges in obesity research. Nutr Hosp 28(Suppl 5):144–153

    PubMed  Google Scholar 

  • Palou M, Pico C, McKay JA et al (2011) Protective effects of leptin during the suckling period against later obesity may be associated with changes in promoter methylation of the hypothalamic pro-opiomelanocortin gene. Br J Nutr 106:769–778

    CAS  PubMed  Google Scholar 

  • Plagemann A, Harder T, Brunn M et al (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 587:4963–4976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rankinen T, Zuberi A, Chagnon YC et al (2006) The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14:529–644

    Google Scholar 

  • Rasmussen EL, Malis C, Jensen CB et al (2005) Altered fat tissue distribution in young adult men who had low birth weight. Diabetes Care 28:151–153

    PubMed  Google Scholar 

  • Ravelli AC, van der Meulen JH, Michels RP et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    CAS  PubMed  Google Scholar 

  • Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP (1999) Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 70:811–816

    CAS  PubMed  Google Scholar 

  • Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Relton CL, Pearce MS, Burn J, Parker L (2005) An investigation of folate-related genetic factors in the determination of birthweight. Paediatr Perinat Epidemiol 19:360–367

    PubMed  Google Scholar 

  • Rich-Edwards JW, Stampfer MJ, Manson JE et al (1997) Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315:396–400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rich-Edwards JW, Kleinman K, Michels KB et al (2005) Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ 330:1115

    PubMed Central  PubMed  Google Scholar 

  • Risnes KR, Romundstad PR, Nilsen TI, Eskild A, Vatten LJ (2009) Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am J Epidemiol 170:622–631

    PubMed  Google Scholar 

  • Ross SA, Dwyer J, Umar A et al (2008) Introduction: diet, epigenetic events and cancer prevention. Nutr Rev 66(Suppl 1):S1–S6

    PubMed Central  PubMed  Google Scholar 

  • Sadli N, Ackland ML, De Mel D, Sinclair AJ, Suphioglu C (2012) Effects of zinc and DHA on the epigenetic regulation of human neuronal cells. Cell Physiol Biochem 29:87–98

    CAS  PubMed  Google Scholar 

  • Sandholt CH, Hansen T, Pedersen O (2012) Beyond the fourth wave of genome-wide obesity association studies. Nutr Diabetes 2:e37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sandovici I, Smith NH, Nitert MD et al (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 108:5449–5454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schoen RE, Weissfeld JL, Pinsky PF, Riley T (2006) Yield of advanced adenoma and cancer based on polyp size detected at screening flexible sigmoidoscopy. Gastroenterology 131:1683–1689

    PubMed  Google Scholar 

  • Shankar A, Teppala S, Sabanayagam C (2012) Urinary bisphenol a levels and measures of obesity: results from the national health and nutrition examination survey 2003–2008. ISRN Endocrinol 2012:965243

    PubMed Central  PubMed  Google Scholar 

  • Silander K, Mohlke KL, Scott LJ et al (2004) Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes 53:1141–1149

    CAS  PubMed  Google Scholar 

  • Sinclair KD, Allegrucci C, Singh R et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104:19351–19356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slater-Jefferies JL, Lillycrop KA, Townsend PA et al (2011) Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-alpha in the heart of the offspring. J Dev Orig Health Dis 2:250–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smolarek I, Wyszko E, Barciszewska AM et al (2010) Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit 16:CR149–CR155

    CAS  PubMed  Google Scholar 

  • Sohi G, Marchand K, Revesz A, Arany E, Hardy DB (2011) Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol 25:785–798

    CAS  PubMed  Google Scholar 

  • Sookoian S, Pirola CJ (2012) DNA methylation and hepatic insulin resistance and steatosis. Curr Opin Clin Nutr Metab Care 15:350–356

    CAS  PubMed  Google Scholar 

  • Soubry A, Schildkraut JM, Murtha A et al (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 11:29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stein CE, Fall CH, Kumaran K, Osmond C, Cox V, Barker DJ (1996) Fetal growth and coronary heart disease in south India. Lancet 348:1269–1273

    CAS  PubMed  Google Scholar 

  • Syddall HE, Aihie Sayer A, Dennison EM, Martin HJ, Barker DJ, Cooper C (2005) Cohort profile: the Hertfordshire cohort study. Int J Epidemiol 34:1234–1242

    CAS  PubMed  Google Scholar 

  • Symonds ME, Budge H, Frazier-Wood AC (2013) Epigenetics and obesity: a relationship waiting to be explained. Hum Hered 75:90–97

    CAS  PubMed  Google Scholar 

  • Takai Y, Tsutsumi O, Ikezuki Y et al (2001) Preimplantation exposure to bisphenol A advances postnatal development. Reprod Toxicol 15:71–74

    CAS  PubMed  Google Scholar 

  • Tang WY, Ho SM (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–182

    PubMed Central  PubMed  Google Scholar 

  • Tanumihardjo SA, Anderson C, Kaufer-Horwitz M et al (2007) Poverty, obesity, and malnutrition: an international perspective recognizing the paradox. J Am Diet Assoc 107:1966–1972

    PubMed  Google Scholar 

  • Tateishi K, Okada Y, Kallin EM, Zhang Y (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458:757–761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trasande L, Attina TM, Blustein J (2012) Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA 308:1113–1121

    CAS  PubMed  Google Scholar 

  • Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279:E83–E87

    CAS  PubMed  Google Scholar 

  • Vickers MH, Gluckman PD, Coveny AH et al (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146:4211–4216

    CAS  PubMed  Google Scholar 

  • Vilahur N, Baccarelli AA, Bustamante M et al (2013) Storage conditions and stability of global DNA methylation in placental tissue. Epigenomics 5:341–348

    CAS  PubMed  Google Scholar 

  • Wang B, Li Y, Shao C, Tan Y, Cai L (2012a) Cadmium and its epigenetic effects. Curr Med Chem 19:2611–2620

    CAS  PubMed  Google Scholar 

  • Wang J, Wu Z, Li D et al (2012b) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    PubMed Central  CAS  PubMed  Google Scholar 

  • WHO (2014) Global Health Observatory. World Health Organization. http://www.who.int/gho/ncd/risk_factors/obesity_text/en/. Accessed 8 Jan 2014

  • Widiker S, Karst S, Wagener A, Brockmann GA (2010) High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. J Appl Genet 51:193–197

    CAS  PubMed  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    CAS  PubMed  Google Scholar 

  • Wolff MS, Teitelbaum SL, Windham G et al (2006) Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect 115:116–121

    PubMed Central  Google Scholar 

  • Yajnik CS, Deshpande SS, Jackson AA et al (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51:29–38

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL (1994) Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J 8:479–488

    CAS  PubMed  Google Scholar 

  • Yila TA, Sasaki S, Miyashita C et al (2012) Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J Epidemiol 22:91–102

    PubMed Central  PubMed  Google Scholar 

  • Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL (2011) Periconceptional nutrition and the early programming of a life of obesity or adversity. Prog Biophys Mol Biol 106:307–314

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Joseph Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Su, L.J. (2015). Environmental Epigenetics and Obesity: Evidences from Animal to Epidemiologic Studies. In: Su, L., Chiang, Tc. (eds) Environmental Epigenetics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6678-8_6

Download citation

Publish with us

Policies and ethics