Skip to main content

The Anterior Cruciate Ligament

  • Chapter
  • First Online:
Atlas of Knee Arthroscopy

Abstract

The anterior cruciate ligament of the knee (ACL) is the most reconstructed ligament in the human body. Granan et al. gathered data from Denmark, Norway and Sweden as part of the Scandinavian registry. The overall annual incidence of primary ACL reconstructions ranged between 32 and 38 per 100,000 inhabitants. This rose to 71–91 for the target population (15–39). There was a slight predominance of males (57–60 %). The median age at injury was 23–27 and at surgery 25–30, with a median time from injury to surgery of 7–10 months. Soccer, handball and skiing were the top injuring sporting activities (13–50 %). The reconstruction averaged approximately 1 h and was predominantly performed as outpatient surgery (38–79 %). Simultaneous meniscal (35–55 %) and cartilage (17–27 %) lesions were common and led to less favorable outcomes. Meniscectomy was the most frequent procedure for meniscal injuries (69–80 %). Autologus hamstrings were the most used grafts (61–86 %), followed by bone – patellar tendon – bone (14–38 %). All knee injury and osteoarthritis outcome (KOOS) subscales improved up to 2 years postoperatively, with no difference between single and double bundle procedures. The highest increase was seen in function and sports, pledging for an injury of the young and physically active population [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granan LP, Forssblad M, Lind M, Engebretsen L. The Scandinavian ACL registries 2004–2007: baseline epidemiology. Acta Orthop. 2009;80(5):563–7.

    PubMed Central  PubMed  Google Scholar 

  2. Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish National Anterior Cruciate Ligament Register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med. 2012;40(10):2230–5.

    PubMed  Google Scholar 

  3. Nordenvall R, Bahmanyar S, Adami J, Stenros C, Wredmark T, Felländer-Tsai L. A population-based nationwide study of cruciate ligament injury in Sweden, 2001–2009: incidence, treatment, and sex differences. Am J Sports Med. 2012;40(8):1808–13.

    PubMed  Google Scholar 

  4. Magnussen RA, Granan LP, Dunn WR, Amendola A, Andrish JT, Brophy R, Carey JL, Flanigan D, Huston LJ, Jones M, Kaeding CC, McCarty EC, Marx RG, Matava MJ, Parker RD, Vidal A, Wolcott M, Wolf BR, Wright RW, Spindler KP, Engebretsen L. Cross-cultural comparison of patients undergoing ACL reconstruction in the United States and Norway. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):98–105.

    PubMed Central  PubMed  Google Scholar 

  5. Maletis GB, Granan LP, Inacio MC, Funahashi TT, Engebretsen L. Comparison of community-based ACL reconstruction registries in the U.S. and Norway. J Bone Joint Surg Am. 2011;93 Suppl 3:31–6.

    PubMed  Google Scholar 

  6. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy. 2007;23(12):1320–5.e6.

    PubMed  Google Scholar 

  7. Schindler OS. Historical aspects on surgery for anterior cruciate ligament deficiency. In: Sanchis-Alfonso V, Monllau JC, editors. The ACL-deficient knee. A problem solving approach. London: Springer; 2013.

    Google Scholar 

  8. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy. 2007;23(3):278–83.

    PubMed  Google Scholar 

  9. Amis AA, Dawkins GP. Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br. 1991;73(2):260–7.

    CAS  PubMed  Google Scholar 

  10. Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res. 2007;454:35–47.

    PubMed  Google Scholar 

  11. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W. The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med. 2007;35(2):223–7.

    PubMed  Google Scholar 

  12. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat. 2013;223(4):321–8.

    Google Scholar 

  13. Ferretti M, Ekdahl M, Shen W, Fu FH. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy. 2007;23(11):1218–25.

    PubMed  Google Scholar 

  14. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH. Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med. 2011;39(1):108–13.

    PubMed  Google Scholar 

  15. Edwards A, Bull AM, Amis AA. The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Part 2: femoral attachment. Knee Surg Sports Traumatol Arthrosc. 2008;16(1):29–36.

    PubMed  Google Scholar 

  16. Edwards A, Bull AM, Amis AA. The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: Part 1: tibial attachment. Knee Surg Sports Traumatol Arthrosc. 2007;15(12):1414–21.

    PubMed  Google Scholar 

  17. Odensten M, Gillquist J. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg Am. 1985;67(2):257–62.

    CAS  PubMed  Google Scholar 

  18. Amis AA. The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):613–20.

    PubMed  Google Scholar 

  19. Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl). 1999;200(3):325–34.

    CAS  Google Scholar 

  20. Arnoczky SP. Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res. 1983;(172):19–25.

    Google Scholar 

  21. DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med. 2004;32(2):477–83.

    PubMed  Google Scholar 

  22. Myers CA, Torry MR, Shelburne KB, Giphart JE, LaPrade RF, Woo SL, Steadman JR. In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy. Am J Sports Med. 2012;40(1):170–8.

    PubMed  Google Scholar 

  23. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930–5.

    CAS  PubMed  Google Scholar 

  24. Quatman CE, Kiapour AM, Demetropoulos CK, Kiapour A, Wordeman SC, Levine JW, Goel VK, Hewett TE. Preferential loading of the ACL compared with the MCL during landing: a novel in sim approach yields the multiplanar mechanism of dynamic valgus during ACL injuries. Am J Sports Med. 2014;42(1):177–86.

    PubMed Central  PubMed  Google Scholar 

  25. Oh YK, Lipps DB, Ashton-Miller JA, Wojtys EM. What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med. 2012;40(3):574–83.

    PubMed  Google Scholar 

  26. Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP. The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med. 2012;40(3):568–73.

    PubMed  Google Scholar 

  27. Meyer EG, Haut RC. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech. 2008;41(16):3377–83.

    PubMed  Google Scholar 

  28. Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12.

    PubMed  Google Scholar 

  29. Nagano Y, Ida H, Akai M, Fukubayashi T. Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee. 2007;14(3):218–23.

    PubMed  Google Scholar 

  30. Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med. 2012;40(1):32–40.

    PubMed  Google Scholar 

  31. Wordeman SC, Quatman CE, Kaeding CC, Hewett TE. In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med. 2012;40(7):1673–81.

    PubMed Central  PubMed  Google Scholar 

  32. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. 2013;41(2):385–95.

    PubMed Central  PubMed  Google Scholar 

  33. Zantop T, Brucker PU, Vidal A, Zelle BA, Fu FH. Intraarticular rupture pattern of the ACL. Clin Orthop Relat Res. 2007;454:48–53.

    PubMed  Google Scholar 

  34. Griffin LY, Kercher J. Risk and gender factors for noncontact anterior cruciate ligament injury. In: Prodromos CC, editor. The anterior cruciate ligament reconstruction, Expert Consult series. Saunders; 2008

    Google Scholar 

  35. Maffulli N, Binfield PM, King JB, Good CJ. Acute haemarthrosis of the knee in athletes. A prospective study of 106 cases. J Bone Joint Surg Br. 1993;75(6):945–9.

    CAS  PubMed  Google Scholar 

  36. Kim SJ, Kim HK. Reliability of the anterior drawer test, the pivot shift test, and the Lachman test. Clin Orthop Relat Res. 1995;317:237–42.

    PubMed  Google Scholar 

  37. Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH. Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med. 2011;39(10):2187–93.

    PubMed  Google Scholar 

  38. Rangger C, Daniel DM, Stone ML, Kaufman K. Diagnosis of an ACL disruption with KT-1000 arthrometer measurements. Knee Surg Sports Traumatol Arthrosc. 1993;1(1):60–6.

    CAS  PubMed  Google Scholar 

  39. Prodromos CC. Diagnosis of anterior cruciate ligament tear. In: Prodromos CC, editor. The anterior cruciate ligament reconstruction, Expert Consult series. Saunders; 2008.

    Google Scholar 

  40. Jakob RP, Stäubli HU, Deland JT. Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br. 1987;69:294–9.

    CAS  PubMed  Google Scholar 

  41. Jonsson H, Riklund-Ahlström K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand. 2004;75(5):594–9.

    PubMed  Google Scholar 

  42. Ayeni OR, Chahal M, Tran MN, Sprague S. Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):767–77.

    PubMed  Google Scholar 

  43. Kuroda R, Hoshino Y, Araki D, Nishizawa Y, Nagamune K, Matsumoto T, Kubo S, Matsushita T, Kurosaka M. Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):686–91.

    PubMed  Google Scholar 

  44. Patel SA, Hageman J, Quatman CE, Wordeman SC, Hewett TE. Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med. 2014;44(2):281–93.

    PubMed  Google Scholar 

  45. Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991;19(4):332–6.

    CAS  PubMed  Google Scholar 

  46. Marcacci M, Zaffagnini S, Iacono F, Neri MP, Petitto A. Early versus late reconstruction for anterior cruciate ligament rupture. Results after five years of follow-up. Am J Sports Med. 1995;23(6):690–3.

    CAS  PubMed  Google Scholar 

  47. Laxdal G, Kartus J, Ejerhed L, Sernert N, Magnusson L, Faxén E, Karlsson J. Outcome and risk factors after anterior cruciate ligament reconstruction: a follow-up study of 948 patients. Arthroscopy. 2005;21(8):958–64.

    PubMed  Google Scholar 

  48. Noyes FR, Barber SD, Mooar LA. A rationale for assessing sports activity levels and limitations in knee disorders. Clin Orthop. 1989;246:238–49.

    PubMed  Google Scholar 

  49. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.

    PubMed  Google Scholar 

  50. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):442–8.

    CAS  PubMed  Google Scholar 

  51. Marcacci M, Zaffagnini S, Giordano G, Iacono F, Presti ML. Anterior cruciate ligament reconstruction associated with extra-articular tenodesis: a prospective clinical and radiographic evaluation with 10- to 13-year follow-up. Am J Sports Med. 2009;37(4):707–14.

    PubMed  Google Scholar 

  52. Li RT, Lorenz S, Xu Y, Harner CD, Fu FH, Irrgang JJ. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39(12):2595–603.

    PubMed  Google Scholar 

  53. Spindler KP, Huston LJ, Wright RW, Kaeding CC, Marx RG, Amendola A, Parker RD, Andrish JT, Reinke EK, Harrell FE Jr; MOON Group, Dunn WR. The prognosis and predictors of sports function and activity at minimum 6 years after anterior cruciate ligament reconstruction: a population cohort study. Am J Sports Med. 2011;39(2):348–59.

    Google Scholar 

  54. Barenius B, Ponzer S, Shalabi A, Bujak R, Norlén L, Eriksson K. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med. 2014;18.

    Google Scholar 

  55. Desai N, Björnsson H, Samuelsson K, Karlsson J, Forssblad M. Outcomes after ACL reconstruction with focus on older patients: results from The Swedish National Anterior Cruciate Ligament Register. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):379–86.

    PubMed  Google Scholar 

  56. Chalmers PN, Mall NA, Moric M, Sherman SL, Paletta GP, Cole BJ, Bach Jr BR. Does ACL reconstruction alter natural history?: a systematic literature review of long-term outcomes. J Bone Joint Surg Am. 2014;96(4):292–300.

    PubMed  Google Scholar 

  57. Hefti F, Muller W, Jakob RP, Staubli HU. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc. 1993;1(3–4):226–34.

    CAS  PubMed  Google Scholar 

  58. Kocher MS, Saxon HS, et al. Management and complications of anterior cruciate ligament injuries in skeletally immature patients: survey of the Herodicus Society and The ACL Study Group. J Pediatr Orthop. 2002;22(4):452–7.

    PubMed  Google Scholar 

  59. Lawrence JT, Argawal N, et al. Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment? Am J Sports Med. 2011;39(12):2582–7.

    PubMed  Google Scholar 

  60. Dumont GD, Hogue GD, et al. Meniscal and chondral injuries associated with pediatric anterior cruciate ligament tears: relationship of treatment time and patient-specific factors. Am J Sports Med. 2012;40(9):2128–33.

    PubMed  Google Scholar 

  61. Gebhard F, Ellermann A, et al. Multicenter-study of operative treatment of intraligamentous tears of the anterior cruciate ligament in children and adolescents: comparison of four different techniques. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):797–803.

    CAS  PubMed  Google Scholar 

  62. Vavken P, Murray MM. Treating anterior cruciate ligament tears in skeletally immature patients. Arthroscopy. 2011;27(5):704–16.

    PubMed Central  PubMed  Google Scholar 

  63. Moksnes H, Engebretsen L, et al. The current evidence for treatment of ACL injuries in children is low: a systematic review. J Bone Joint Surg Am. 2012;94(12):1112–9.

    PubMed  Google Scholar 

  64. Hărăguş H, Prejbeanu R, Vermeşan D, Damian G, Vermeşan S. Pediatric ACL reconstructions using transphyseal hamstrings. J Pediatr. 2012;XV(59–60):37–41. ISSN 2065-4855.

    Google Scholar 

  65. Courvoisier A, Grimaldi M, et al. Good surgical outcome of transphyseal ACL reconstruction in skeletally immaturepatients using four-strand hamstring graft. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):588–91.

    PubMed  Google Scholar 

  66. McIntosh AL, Dahm DL, et al. Anterior cruciate ligament reconstruction in the skeletally immature patient. Arthroscopy. 2006;22(12):1325–30.

    PubMed  Google Scholar 

  67. Streich NA, Barié A, et al. Transphyseal reconstruction of the anterior cruciate ligament in prepubescent athletes. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1481–6.

    PubMed  Google Scholar 

  68. Redler LH, Brafman RT, et al. Anterior cruciate ligament reconstruction in skeletally immature patients with transphyseal tunnels. Arthroscopy. 2012;28(11):1710–7.

    PubMed  Google Scholar 

  69. Shea KG, Apel PJ, et al. The anatomy of the proximal tibia in pediatric and adolescent patients: implications for ACL reconstruction and prevention of physeal arrest. Knee Surg Sports Traumatol Arthrosc. 2007;15(4):320–7.

    PubMed  Google Scholar 

  70. Shea KG, Belzer J, et al. Volumetric injury of the physis during single-bundle anterior cruciate ligament reconstruction in children: a 3-dimensional study using magnetic resonance imaging. Arthroscopy. 2009;25(12):1415–22.

    PubMed  Google Scholar 

  71. Xerogeanes JW, Hammond KE, et al. Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: an MRI-based study. J Bone Joint Surg Am. 2012;94(3):268–76.

    PubMed  Google Scholar 

  72. Nwachukwu BU, McFeely ED, et al. Arthrofibrosis after anterior cruciate ligament reconstruction in children and adolescents. J Pediatr Orthop. 2011;31(8):811–7.

    PubMed  Google Scholar 

  73. Frosch KH, Stengel D, et al. Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy. 2010;26(11):1539–50.

    PubMed  Google Scholar 

  74. Kaeding CC, Flanigan D, et al. Surgical techniques and outcomes after anterior cruciate ligament reconstruction in preadolescent patients. Arthroscopy. 2010;26(11):1530–8.

    PubMed  Google Scholar 

  75. van Eck CF, Lesniak BP, Schreiber VM, Fu FH. Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy. 2010;26(2):258–68.

    PubMed  Google Scholar 

  76. Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986;4(2):​162–72.

    CAS  PubMed  Google Scholar 

  77. Kleiner JB, Amiel D, Harwood FL, Akeson WH. Early histologic, metabolic, and vascular assessment of anterior cruciate ligament autografts. J Orthop Res. 1989;7(2):235–42.

    CAS  PubMed  Google Scholar 

  78. Papalia R, Franceschi F, Vasta S, Di Martino A, Maffulli N, Denaro V. Sparing the anterior cruciate ligament remnant: is it worth the hassle? Br Med Bull. 2012;104:91–111.

    PubMed  Google Scholar 

  79. Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64(2):217–24.

    CAS  PubMed  Google Scholar 

  80. Johnson LL. The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: a histological study. Arthroscopy. 1993;9(2):131–42.

    CAS  PubMed  Google Scholar 

  81. Claes S, Verdonk P, Forsyth R, Bellemans J. The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med. 2011;39(11):2476–83.

    PubMed  Google Scholar 

  82. Denti M, Monteleone M, Berardi A, Panni AS. Anterior cruciate ligament mechanoreceptors. Clin Orthop Relat Res. 1994;308:29–32.

    PubMed  Google Scholar 

  83. Barrack RL, Lund PJ, Munn BG, Wink C, Happel L. Evidence of reinnervation of free patellar tendon autograft used for anterior cruciate ligament reconstruction. Am J Sports Med. 1997;25:196–202.

    CAS  PubMed  Google Scholar 

  84. Georgoulis AD, Pappa L, Moebius U, Malamou-Mitsi V, Pappa S, Papageorgiou CO, Agnantis NJ, Soucacos PN. The presence of proprioceptive mechanoreceptors in the remnants of the ruptured ACL as a possible source of re-innervation of the ACL autograft. Knee Surg Sports Traumatol Arthrosc. 2001;9:364–8.

    CAS  PubMed  Google Scholar 

  85. Dhillon MS, Bali K, Vasistha RK. Immunohistological evaluation of proprioceptive potential of the residual stump of injured anterior cruciate ligaments. Int Orthop. 2010;34:737–41.

    PubMed Central  PubMed  Google Scholar 

  86. Gohil S, Annear PO, Breidahl W. Anterior cruciate ligament reconstruction using autologous double hamstrings: a comparison of standard versus minimal debridement techniques using MRI to assess revascularisation. A randomised prospective study with a one-year follow-up. J Bone Joint Surg Br. 2007;89(9):1165–71.

    CAS  PubMed  Google Scholar 

  87. Lee BI, Kwon SW, Kim JB, Choi HS, Min KD. Comparison of clinical results according to amount of preserved remnant in arthroscopic anterior cruciate ligament reconstruction using quadrupled hamstring graft. Arthroscopy. 2008;24(5):560–8.

    PubMed  Google Scholar 

  88. Lee BI, Min KD, Choi HS, Kwon SW, Chun DI, Yun ES, Lee DW, Jin SY, Yoo JH. Immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc. 2009;17:1095–101.

    PubMed  Google Scholar 

  89. Bali K, Dhillon MS, Vasistha RK, Kakkar N, Chana R, Prabhakar S. Efficacy of immunohistological methods in detecting functionally viable mechanoreceptors in the remnant stumps of injured anterior cruciate ligaments and its clinical importance. Knee Surg Sports Traumatol Arthrosc. 2012;20:75–80.

    PubMed  Google Scholar 

  90. Del Valle ME, Harwin SF, Maestro A, Murcia A, Vega JA. Immunohistochemical analysis of mechanoreceptors in the human posterior cruciate ligament: a demonstration of its proprioceptive role and clinical relevance. J Arthroplasty. 1998;13:916–22.

    PubMed  Google Scholar 

  91. Lee BI, Min KD, Choi HS, Kim JB, Kim ST. Arthroscopic anterior cruciate ligament reconstruction with the tibial-remnant preserving technique using a hamstring graft. Arthroscopy. 2006;22(3):340.e1–7.

    Google Scholar 

  92. Löcherbach C, Zayni R, Chambat P, Sonnery-Cottet B. Biologically enhanced ACL reconstruction. Orthop Traumatol Surg Res. 2010;96(7):810–5.

    PubMed  Google Scholar 

  93. Cha J, Choi SH, Kwon JW, Lee SH, Ahn JH. Analysis of cyclops lesions after different anterior cruciate ligament reconstructions: a comparison of the single-bundle and remnant bundle preservation techniques. Skeletal Radiol. 2012;41(8):997–1002.

    PubMed  Google Scholar 

  94. Howell SM, Barad SJ. Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med. 1995;23(3):288–94.

    CAS  PubMed  Google Scholar 

  95. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2002;30(5):660–6.

    PubMed  Google Scholar 

  96. Arnold MP, Kooloos J, van Kampen A. Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: a cadaver study. Knee Surg Sports Traumatol Arthrosc. 2001;9(4):194–9.

    CAS  PubMed  Google Scholar 

  97. Hantes ME, Zachos VC, Liantsis A, Venouziou A, Karantanas AH, Malizos KN. Differences in graft orientation using the transtibial and anteromedial portal technique in anterior cruciate ligament reconstruction: a magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):880–6.

    PubMed  Google Scholar 

  98. Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med. 2010;38(10):1987–96.

    PubMed  Google Scholar 

  99. Bowers AL, Bedi A, Lipman JD, Potter HG, Rodeo SA, Pearle AD, Warren RF, Altchek DW. Comparison of anterior cruciate ligament tunnel position and graft obliquity with transtibial and anteromedial portal femoral tunnel reaming techniques using high-resolution magnetic resonance imaging. Arthroscopy. 2011;27(11):1511–22.

    PubMed  Google Scholar 

  100. Kopf S, Forsythe B, Wong AK, Tashman S, Irrgang JJ, Fu FH. Transtibial ACL reconstruction technique fails to position drill tunnels anatomically in vivo 3D CT study. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2200–7.

    PubMed Central  PubMed  Google Scholar 

  101. Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA, Pearle AD, Altchek DW. Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy. 2011;27(3):380–90.

    PubMed  Google Scholar 

  102. Ayerza MA, Múscolo DL, Costa-Paz M, Makino A, Rondón L. Comparison of sagittal obliquity of the reconstructed anterior cruciate ligament with native anterior cruciate ligament using magnetic resonance imaging. Arthroscopy. 2003;19(3):257–61.

    PubMed  Google Scholar 

  103. Ahn JH, Lee SH, Yoo JC, Ha HC. Measurement of the graft angles for the anterior cruciate ligament reconstruction with transtibial technique using postoperative magnetic resonance imaging in comparative study. Knee Surg Sports Traumatol Arthrosc. 2007;15(11):1293–300.

    PubMed  Google Scholar 

  104. Ahn JH, Lee SH, Choi SH, Lim TK. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: comparison of remnant bundle preservation and standard technique. Am J Sports Med. 2010;38(9):1768–77.

    PubMed  Google Scholar 

  105. Fujimoto E, Sumen Y, Deie M, Yasumoto M, Kobayashi K, Ochi M. Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstruction software. Magn Reson Imaging. 2004;22(8):1125–9.

    PubMed  Google Scholar 

  106. Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H, Nakamura N. Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy. 2010;26(9 Suppl):S13–20.

    PubMed  Google Scholar 

  107. Lertwanich P, Martins CA, Asai S, Ingham SJ, Smolinski P, Fu FH. Anterior cruciate ligament tunnel position measurement reliability on 3-dimensional reconstructed computed tomography. Arthroscopy. 2011;27(3):391–8.

    PubMed  Google Scholar 

  108. Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA. Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2012;20(5):986–95.

    PubMed  Google Scholar 

  109. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc. 2009;17(3):213–9.

    PubMed  Google Scholar 

  110. Hantes ME, Tsarouhas A, Giakas G, Spiropoulos G, Sideris V, Christel P, Malizos KN. Effect of fatigue on tibial rotation after single- and double-bundle anterior cruciate ligament reconstruction: a 3-dimensional kinematic and kinetic matched-group analysis. Am J Sports Med. 2012 Sep;40(9):2045–51.

    Google Scholar 

  111. Ziegler CG, Pietrini SD, Westerhaus BD, Anderson CJ, Wijdicks CA, Johansen S, Engebretsen L, LaPrade RF. Arthroscopically pertinent landmarks for tunnel positioning in single-bundle and double-bundle anterior cruciate ligament reconstructions. Am J Sports Med. 2011;39(4):743–52.

    PubMed  Google Scholar 

  112. Hensler D, Working ZM, Illingworth KD, Thorhauer ED, Tashman S, Fu FH. Medial portal drilling: effects on the femoral tunnel aperture morphology during anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2011;93(22):2063–71.

    PubMed  Google Scholar 

  113. Nakamura M, Deie M, Shibuya H, Nakamae A, Adachi N, Aoyama H, Ochi M. Potential risks of femoral tunnel drilling through the far anteromedial portal: a cadaveric study. Arthroscopy. 2009;25(5):481–7.

    PubMed  Google Scholar 

  114. Kopf S, Martin DE, Tashman S, Fu FH. Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2010;92(4):871–81.

    PubMed  Google Scholar 

  115. Geeslin AG, Jansson KS, Wijdicks CA, Chapman MA, Fok AS, LaPrade RF. Tibial tunnel aperture irregularity after drilling with 5 reamer designs: a qualitative micro-computed tomography analysis. Am J Sports Med. 2011;39(4):825–31.

    PubMed  Google Scholar 

  116. Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H. The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1086–93.

    PubMed  Google Scholar 

  117. Zantop T, Ferretti M, Bell KM, Brucker PU, Gilbertson L, Fu FH. Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med. 2008;36(11):2158–66.

    PubMed  Google Scholar 

  118. Arneja S, McConkey MO, Mulpuri K, Chin P, Gilbart MK, Regan WD, Leith JM. Graft tensioning in anterior cruciate ligament reconstruction: a systematic review of randomized controlled trials. Arthroscopy. 2009;25(2):200–7.

    PubMed  Google Scholar 

  119. Muneta T, Sekiya I, Yagishita K, Ogiuchi T, Yamamoto H, Shinomiya K. Two-bundle reconstruction of the anterior cruciate ligament using semitendinosus tendon with Endobuttons: operative technique and preliminary results. Arthroscopy. 1999;15(6):618–24.

    CAS  PubMed  Google Scholar 

  120. Colombet P, Robinson J, Jambou S, Allard M, Bousquet V, de Lavigne C. Two-bundle, four-tunnel anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(7):629–36.

    PubMed  Google Scholar 

  121. Vermesan D, Prejbeanu R, Laitin S, Georgianu V, Haragus H, Nitescu S, Tatullo M, Tattoli M, Caprio M, Cagiano R. Meniscal tears left in situ during anatomic single bundle anterior cruciate ligament reconstruction. Eur Rev Med Pharmacol Sci. 2014;18(2):252–6.

    CAS  PubMed  Google Scholar 

  122. Neuman P, Englund M, Kostogiannis I, Fridén T, Roos H, Dahlberg LE. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med. 2008;36(9):1717–25.

    PubMed  Google Scholar 

  123. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med. 2003;31(1):75–9.

    PubMed  Google Scholar 

  124. Siebold R. The concept of complete footprint restoration with guidelines for single- and double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):699–706.

    PubMed  Google Scholar 

  125. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH. Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med. 2012;40(3):512–20.

    PubMed  Google Scholar 

  126. Musahl V, Becker R, Fu FH, Karlsson J. New trends in ACL research. Knee Surg Sports Traumatol Arthrosc. 2011;19 Suppl 1:S1–3.

    PubMed  Google Scholar 

  127. Rabuck SJ, Middleton KK, Maeda S, Fujimaki Y, Muller B, Araujo PH, Fu FH. Individualized anatomic anterior cruciate ligament reconstruction. Arthrosc Tech. 2012;1(1):e23–9.

    PubMed Central  PubMed  Google Scholar 

  128. Pujol N, Colombet P, Cucurulo T, Graveleau N, Hulet C, Panisset JC, Potel JF, Servien E, Sonnery-Cottet B, Trojani C, Djian P, French Arthroscopy Society (SFA). Natural history of partial anterior cruciate ligament tears: a systematic literature review. Orthop Traumatol Surg Res. 2012;98(8 Suppl):S160–4.

    CAS  PubMed  Google Scholar 

  129. Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN. Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(3):635–40.

    PubMed  Google Scholar 

  130. Pässler HH. History of implant-free anterior cruciate ligament reconstruction. Unfallchirurg. 2010;113(7):524–31. Springer-Verlag.

    PubMed  Google Scholar 

  131. Hertel P, Behrend H. Implant-free anterior cruciate ligament reconstruction with the patella ligament and press-fit double bundle technique. Unfallchirurg. 2010;113(7):540–8. Springer-Verlag.

    CAS  PubMed  Google Scholar 

  132. Kühne JH, Fottner M, Plitz W. Experimental stability of a new implant-free fixation technique in ACL replacement. Unfallchirurg. 1999;102(10):791–6. Springer-Verlag.

    PubMed  Google Scholar 

  133. Geiges B, von Falck C, Knobloch K, Haasper C, Meller R, Krettek C, et al. Biodegradable screw versus a press-fit bone plug fixation for ACL reconstruction: a prospective randomized study. Unfallchirurg. 2013;116(2):109–17.

    CAS  PubMed  Google Scholar 

  134. Colvin A, Sharma C, Parides M, Glashow J. What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res. 2011;469(4):1075–81.

    PubMed Central  PubMed  Google Scholar 

  135. Sanchis-Alfonso V, Monllau JC. The ACL-deficient knee. Springer; 2012. p. 1.

    Google Scholar 

  136. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy. 2006;22(6):660–8.

    PubMed  Google Scholar 

  137. McGuire DA, Barber FA, Elrod BF, Paulos LE. Bioabsorbable interference screws for graft fixation in anterior cruciate ligament reconstruction. Arthroscopy. 1999;15(5):463–73.

    CAS  PubMed  Google Scholar 

  138. Offerhaus C, Balke M, Braas M, Pennig D, Gick S, Höher J. Knee laxity in anterior cruciate ligament reconstruction: the influence of graft rotation using interference screw fixation. Unfallchirurg. 2014;117(9):822–8.

    Google Scholar 

  139. Musgrove TP, Salmon LJ, Burt CF, Pinczewski LA. The influence of reverse-thread screw femoral fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendon. Am J Sports Med. 2000;28(5):695–9.

    CAS  PubMed  Google Scholar 

  140. Drogset JO, Straume LG, Bjørkmo I, Myhr G. A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):753–9. Springer-Verlag.

    PubMed Central  PubMed  Google Scholar 

  141. Myers P, Logan M, Stokes A, Boyd K, Watts M. Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up. Arthroscopy. 2008;24(7):817–23. Elsevier.

    PubMed  Google Scholar 

  142. Shen C, Jiang S-D, Jiang L-S, Dai L-Y. Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy. 2010;26(5):705–13.

    PubMed  Google Scholar 

  143. Bergsma J. Late degradation tissue response to poly(?-lactide) bone plates and screws. Biomaterials. 1995;16(1):25–31.

    CAS  PubMed  Google Scholar 

  144. Martinek V, Seil R, Lattermann C, Watkins SC, Fu FH. The fate of the poly-L-lactic acid interference screw after anterior cruciate ligament reconstruction. Arthroscopy. 2001;17(1):73–6.

    CAS  PubMed  Google Scholar 

  145. American Orthopaedic Society for Sports Medicine. Magnetic resonance imaging analysis of bioabsorbable interference screws used for fixation of bone-patellar tendon-bone autografts in endoscopic reconstruction of the anterior cruciate ligament. Am J Sports Med. 2006;34(7):1164–9.

    Google Scholar 

  146. Konan S, Haddad FS. The unpredictable material properties of bioabsorbable PLC interference screws and their adverse effects in ACL reconstruction surgery. Knee Surg Sports Traumatol Arthrosc. 2009;17(3):293–7.

    PubMed  Google Scholar 

  147. Barber FA, Dockery WD. Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy. 2008;24(4):441–7.

    PubMed  Google Scholar 

  148. Barber FA, Dockery WD, Hrnack SA. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw. Arthroscopy. 2011;27(5):637–43.

    PubMed  Google Scholar 

  149. Barber FA, Hrnack SA. Poly L-lactide co-glycolide/β-tricalcium phosphate interference screw fixation for bone-patellar tendon bone anterior cruciate ligament reconstruction. J Knee Surg. 2013;26(6):423–8.

    PubMed  Google Scholar 

  150. Baums MH, Zelle BA, Schultz W, Ernstberger T, Klinger H-M. Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):865–8.

    CAS  PubMed  Google Scholar 

  151. Masini BD, Stinner DJ, Waterman SM, Wenke JC, Gerlinger TL. Bacterial adherence to titanium, poly-L-lactic acid, and composite hydroxyapatite and poly-L-lactic acid interference screws. J Surg Orthop Adv. 2012;21(4):237–41.

    PubMed  Google Scholar 

  152. Rhee PC, Dahm DL, Stuart MJ, Thoreson A, An K-N, Levy BA. Delta screw versus RetroScrew tibial fixation for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19 Suppl 1(S1):S94–100.

    PubMed  Google Scholar 

  153. Nag HL, Gupta H. Seating of TightRope RT button under direct arthroscopic visualization in anterior cruciate ligament reconstruction to prevent potential complications. Arthrosc Tech. 2012;1(1):e83–5. Elsevier.

    PubMed Central  PubMed  Google Scholar 

  154. McGuire DA, Barber FA, Milchgrub S, Wolchok JC. A postmortem examination of poly-L lactic acid interference screws 4 months after implantation during anterior cruciate ligament reconstruction. Arthroscopy. 2001;17(9):988–92.

    CAS  PubMed  Google Scholar 

  155. Höher J, Livesay GA, Ma CB, Withrow JD, Fu FH, Woo SL. Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc. 1999;7(4):215–9.

    PubMed  Google Scholar 

  156. Kousa P, Järvinen TLN, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med. 2003;31(2):174–81.

    PubMed  Google Scholar 

  157. Halder AM. Arthroscopic reconstruction of anterior cruciate ligament with press-fit technique. Unfallchirurg. 2010;113(8):635–40.

    CAS  PubMed  Google Scholar 

  158. Lenschow S, Herbort M, Strässer A, Strobel M, Raschke M, Petersen W, et al. Structural properties of a new device for graft fixation in cruciate ligament reconstruction: the shim technique. Arch Orthop Trauma Surg. 2011;131(8):1067–72.

    CAS  PubMed  Google Scholar 

  159. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC. Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen? Am J Sports Med. 2014;42(2):343–9.

    PubMed  Google Scholar 

  160. Petre BM, Smith SD, Jansson KS, de Meijer P-P, Hackett TR, LaPrade RF, et al. Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med. 2013;41(2):416–22.

    PubMed  Google Scholar 

  161. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA. Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee. 2014;21(3):743–8. Elsevier.

    PubMed  Google Scholar 

  162. Conner CS, Perez BA, Morris RP, Buckner JW, Buford WL, Ivey FM. Three femoral fixation devices for anterior cruciate ligament reconstruction: comparison of fixation on the lateral cortex versus the anterior cortex. Arthroscopy. 2010;26(6):796–807.

    PubMed  Google Scholar 

  163. Papachristou G, Kalliakmanis A, Papachristou K, Magnissalis E, Sourlas J, Plessas S. Comparison of fixation methods of double-bundle double-tibial tunnel ACL reconstruction and double-bundle single-tunnel technique. Int Orthop. 2008;32(4):483–8.

    PubMed Central  PubMed  Google Scholar 

  164. Marx RG, Spock CR. Complications following hamstring anterior cruciate ligament reconstruction with femoral cross-pin fixation. Arthroscopy. 2005;21(6):762–3. Elsevier.

    PubMed  Google Scholar 

  165. Clark R, Olsen RE, Larson BJ, Goble EM, Farrer RP. Cross-pin femoral fixation: a new technique for hamstring anterior cruciate ligament reconstruction of the knee. Arthroscopy. 1998;14(3):258–67.

    CAS  PubMed  Google Scholar 

  166. Kuskucu SM. Comparison of short-term results of bone tunnel enlargement between EndoButton™ CL and cross-pin fixation systems after chronic anterior cruciate ligament reconstruction with autologous quadrupled hamstring tendons. J Int Med Res. 2008;36(1):23–30. SAGE Publications.

    CAS  PubMed  Google Scholar 

  167. Baumfeld JA, Diduch DR, Rubino LJ, Hart JA, Miller MD, Barr MS, et al. Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: a comparison between double cross-pin and suspensory graft fixation. Knee Surg Sports Traumatol Arthrosc. 2008;16(12):1108–13. Springer-Verlag.

    PubMed  Google Scholar 

  168. Sabat D, Kundu K, Arora S, Kumar V. Tunnel widening after anterior cruciate ligament reconstruction: a prospective randomized computed tomography – based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2011;27(6):776–83. Elsevier.

    Google Scholar 

  169. Kong C-G, In Y, Kim G-H, Ahn C-Y. Cross pins versus Endobutton femoral fixation in hamstring anterior cruciate ligament reconstruction: minimum 4-year follow-up. Knee Surg Relat Res. 2012;24(1):34.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Ahn JH, Lee SA, Choi S-H, Wang JH, Yoo JC, Lee SS, et al. Femoral cross-pin breakage and its effects on the results of anterior cruciate ligament reconstruction using a hamstring autograft. Arthroscopy. 2012;28(12):1826–32. Elsevier.

    PubMed  Google Scholar 

  171. Bakhru P, Park B, Umans H, DiFelice GS, Tobin K. MRI of broken bioabsorbable crosspin fixation in hamstring graft reconstruction of the anterior cruciate ligament. Skeletal Radiol. 2011;40(6):737–43.

    PubMed  Google Scholar 

  172. Han DLY, Nyland J, Kendzior M, Nawab A, Caborn DNM. Intratunnel versus extratunnel fixation of hamstring autograft for anterior cruciate ligament reconstruction. Arthroscopy. 2012;28(10):1555–66.

    PubMed  Google Scholar 

  173. Prado RK, Ntagiopoulos PG, Fucs PMB, Severino NR, Dejour D. A new technique in double-bundle anterior cruciate ligament reconstruction using implant-free femoral fixation. Int Orthop. 2012;36(7):1479–85. Springer-Verlag.

    PubMed Central  PubMed  Google Scholar 

  174. Pässler HH. Anatomic anterior cruciate ligament reconstruction with hamstrings using press-fit fixation without hardware: operative technique and long-term results of a prospective and randomized study. Unfallchirurg. 2010;113(7):555–60. Springer-Verlag.

    PubMed  Google Scholar 

  175. Frenzel G, Wuschech H, Felmet G, Ingenhoven E, Schmidt M, Ziesche JJ. Cost analysis of implant-free replacement of anterior cruciate ligament. Unfallchirurg. 2010;113(8):615–20.

    CAS  PubMed  Google Scholar 

  176. Poolman RW, Abouali JA, Conter HJ, Bhandari M. Overlapping systematic reviews of anterior cruciate ligament reconstruction comparing hamstring autograft with bone-patellar tendon-bone autograft: why are they different? J Bone Joint Surg Am. 2007;89(7):1542–52.

    PubMed  Google Scholar 

  177. Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell Jr FE. Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med. 2004;32(8):1986–95.

    PubMed  Google Scholar 

  178. Samuelsson K, Andersson D, Karlsson J. Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy. 2009;25(10):1139–74.

    PubMed  Google Scholar 

  179. Mohtadi NG, Chan DS, Dainty KN, Whelan DB. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2011;9, CD005960.

    PubMed  Google Scholar 

  180. Pagnani MJ, Warner JJ, O’Brien SJ, Warren RF. Anatomic considerations in harvesting the semitendinosus and gracilis tendons and a technique of harvest. Am J Sports Med. 1993;21(4):565–71.

    CAS  PubMed  Google Scholar 

  181. Ivey M, Prud’homme J. Anatomic variations of the pes anserinus: a cadaver study. Orthopedics. 1993;16(5):601–6.

    CAS  PubMed  Google Scholar 

  182. Kerver AL, Leliveld MS, den Hartog D, Verhofstad MH, Kleinrensink GJ. The surgical anatomy of the infrapatellar branch of the saphenous nerve in relation to incisions for anteromedial knee surgery. J Bone Joint Surg Am. 2013;95(23):2119–25.

    CAS  PubMed  Google Scholar 

  183. Ferrari JD, Ferrari DA. The semitendinosus: anatomic considerations in tendon harvesting. Orthop Rev. 1991;20(12):1085–8.

    CAS  PubMed  Google Scholar 

  184. Tohyama H, Beynnon BD, Johnson RJ, Nichols CE, Renström PA. Morphometry of the semitendinosus and gracilis tendons with application to anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 1993;1(3–4):143–7.

    CAS  PubMed  Google Scholar 

  185. Carofino B, Fulkerson J. Medial hamstring tendon regeneration following harvest for anterior cruciate ligament reconstruction: fact, myth, and clinical implication. Arthroscopy. 2005;21(10):1257–65.

    PubMed  Google Scholar 

  186. Kartus J, Ejerhed L, Eriksson BI, Karlsson J. The localization of the infrapatellar nerves in the anterior knee region with special emphasis on central third patellar tendon harvest: a dissection study on cadaver and amputated specimens. Arthroscopy. 1999;15(6):577–86.

    CAS  PubMed  Google Scholar 

  187. Svensson M, Kartus J, Ejerhed L, Lindahl S, Karlsson J. Does the patellar tendon normalize after harvesting its central third?: a prospective long-term MRI study. Am J Sports Med. 2004;32(1):34–8.

    PubMed  Google Scholar 

  188. Moebius UG, Georgoulis AD, Papageorgiou CD, Papadonikolakis A, Rossis J, Soucacos PN. Alterations of the extensor apparatus after anterior cruciate ligament reconstruction using the medial third of the patellar tendon. Arthroscopy. 2001;17(9):953–9.

    CAS  PubMed  Google Scholar 

  189. Prodromos CC, Joyce BT. The relative strengths of anterior cruciate ligament autografts and allografts. In: Prodromos CC, editor. The anterior cruciate ligament reconstruction, Expert Consult series. Saunders; 2008.

    Google Scholar 

  190. Stäubli HU, Schatzmann L, Brunner P, Rincón L, Nolte LP. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med. 1999;27(1):27–34.

    PubMed  Google Scholar 

  191. Sasaki N, Farraro KF, Kim KE, Woo SL. Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction: a cadaveric study. Am J Sports Med. 2014;42(3):723–30.

    PubMed Central  PubMed  Google Scholar 

  192. Lund B, Nielsen T, Faunø P, Christiansen SE, Lind M. Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study. Arthroscopy. 2014;30(5):593–8.

    PubMed  Google Scholar 

  193. Prodromos C, Joyce B, Shi K. A meta-analysis of stability of autografts compared to allografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2007;15(7):851–6. Epub 2007 Apr 17.

    PubMed  Google Scholar 

  194. Hoburg AT, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S. Effect of electron beam irradiation on biomechanical properties of patellar tendon allografts in anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38(6):1134–40.

    PubMed  Google Scholar 

  195. Lamblin CJ, Waterman BR, Lubowitz JH. Anterior cruciate ligament reconstruction with autografts compared with non-irradiated, non-chemically treated allografts. Arthroscopy. 2013;​29(6):1113–22.

    PubMed  Google Scholar 

  196. Park SS, Dwyer T, Congiusta F, Whelan DB, Theodoropoulos J. Analysis of irradiation on the clinical effectiveness of allogenic tissue when used for primary anterior cruciate ligament reconstruction. Am J Sports Med. Epub 2014 Jan 29.

    Google Scholar 

  197. Viateau V, Manassero M, Anagnostou F, Guérard S, Mitton D, Migonney V. Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement: a 3-month and 12-month study. Arthroscopy. 2013;29(6):1079–88.

    PubMed  Google Scholar 

  198. Newman SD, Atkinson HD, Willis-Owen CA. Anterior cruciate ligament reconstruction with the ligament augmentation and reconstruction system: a systematic review. Int Orthop. 2013;37(2):321–6.

    PubMed Central  PubMed  Google Scholar 

  199. Barker JU, Drakos MC, Maak TG, Warren RF, Williams 3rd RJ, Allen AA. Effect of graft selection on the incidence of postoperative infection in anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38(2):281–6.

    PubMed  Google Scholar 

  200. Wang C, Lee YH, Siebold R. Recommendations for the management of septic arthritis after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2136–44.

    Google Scholar 

  201. Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT. Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med. 2013;41(8):1780–5.

    PubMed  Google Scholar 

  202. Sonnery-Cottet B, Archbold P, Zayni R, Bortolletto J, Thaunat M, Prost T, Padua VB, Chambat P. Prevalence of septic arthritis after anterior cruciate ligament reconstruction among professional athletes. Am J Sports Med. 2011;39(11):2371–6.

    PubMed  Google Scholar 

  203. Saper M, Stephenson K, Heisey M. Arthroscopic irrigation and debridement in the treatment of septic arthritis after anterior cruciate ligament reconstruction. Arthroscopy. 2014;30(6):747–54. doi:10.1016/j.arthro.2014.02.015. pii: S0749-8063(14)00126-1.

    PubMed  Google Scholar 

  204. Izquierdo Jr R, Cadet ER, Bauer R, Stanwood W, Levine WN, Ahmad CS. A survey of sports medicine specialists investigating the preferred management of contaminated anterior cruciate ligament grafts. Arthroscopy. 2005;21(11):1348–53.

    PubMed  Google Scholar 

  205. Plante MJ, Li X, Scully G, Brown MA, Busconi BD, DeAngelis NA. Evaluation of sterilization methods following contamination of hamstring autograft during anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):696–701.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horia Haragus MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Prejbeanu, R., Haragus, H., Ramadani, F. (2015). The Anterior Cruciate Ligament. In: Prejbeanu, R. (eds) Atlas of Knee Arthroscopy. Springer, London. https://doi.org/10.1007/978-1-4471-6593-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6593-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6592-7

  • Online ISBN: 978-1-4471-6593-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics