Skip to main content

Existence of Mesenchymal-Like Somatic Stem Cells in the Porcine Uterus

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Somatic stem cells are thought to be responsible for remarkable remodeling and regeneration of adult uterus. They are rare, undifferentiated cells capable of self-renewal and specialization into all endometrial and myometrial cellular components. So far best characterized by their functional properties, i.e., clonogenicity and ability to differentiate into four lineages (osteogenic, chondrogenic, adipogenic, myogenic) under appropriate in vitro conditions, are mesenchymal stem cells found primarily in the human and mouse and recently in porcine uterus. These cells are also defined by the expression of mesenchymal phenotypic markers (e.g., CD73, CD90, CD105) and lack of hematopoietic markers (CD34, CD45). Endometrial mesenchymal stem cells constitute a primary source for menstrual blood stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13:87ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Casado JG, et al. Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Vet Immunol Immunopathol. 2012. http://dx.doi.org/10.1016/j.vetimm.2012.03.015.

  5. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Gargett CE, Schwab KE, Zillwood RM, Nguyen HPT, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136ā€“45.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  7. Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140:11ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Kyo S, Maida Y, Inoue M. Stem cells in endometrium and endometrial cancer: accumulating evidence and unresolved questions. Cancer Lett. 2011;308:123ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Wolff EF, Wolff AB, Du H, Taylor HS. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci. 2007;14:524ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Miernik K, Karasinski J. Porcine uterus contains a population of mesenchymal stem cells. Reproduction. 2012;143:203ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, Ito M, Ohta K, Uchida H, Asada H, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104:18700ā€“5.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  12. Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007;22:45ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Donofrio G, Franceschi V, Capocefalo A, Cavirani S, Sheldon IM. Bovine endometrial stromal cells display osteogenic properties. Reprod Biol Endocrinol. 2008;6:65.

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  14. Casal M, Haskins M. Large animal models and gene therapy. Eur J Hum Genet. 2006;14:266ā€“72.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16:818ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. CervellĆ³ I, Gil-Sanchis C, Mas A, Delgado-Rosas F, MartĆ­nez-Conejero JA, GalĆ”n A, MartĆ­nez-Romero A, MartĆ­nez S, Navarro I, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5:e10964.

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  17. Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells. 2006;24:1529ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, Zlatkov V, Kehayov I, Kyurkchiev S. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008;135:551ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Moi T, Miyako K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimuzu T, Okano T, Sakamoto M, Ogawa S, Umezawa A. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal. Stem Cells. 2008;26:1695ā€“704.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, ThƩbaud B, Riordan NH. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  22. Allickson JG, Sanchez A, Yefimenko N, Borlongan CV, Sanberg PR. Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. Open Stem Cell. 2011;3:4ā€“10.

    ArticleĀ  Google ScholarĀ 

  23. Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;14:539ā€“43.

    ArticleĀ  Google ScholarĀ 

  24. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84:1124ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, et al. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5(4):e10387. doi:10.1371/journal.pone.0010387.

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  26. Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90:1528ā€“37.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS. Endometrial stem cell transplantation restores dopamine production in a Parkinsonā€™s disease model. J Cell Mol Med. 2011;15:747ā€“55.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  28. Lynch L, Golden-Mason L, Eogan M, Oā€™Herlihy C, Oā€™Farrelly C. Cells with haematopoietic stem cell phenotype in adult human endometrium: relevance to infertility? Hum Reprod. 2007;22:919ā€“26.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Onodera N, Tamaki T, Okada Y, Akatsuka A, Aoki D. Identification of tissue-specific vasculogenic cells originating from murine uterus. Histochem Cell Biol. 2006;125:625ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM. Nestin expression ā€“ a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Wan Safwani WK, Makpol S, Sathapan S, Chua KH. The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation. Biotechnol Appl Biochem. 2011;58:261ā€“70.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  32. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schƶler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor OCT4. Cell. 1998;95:379ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Matthai C, Horvat R, Noe M, Nagele F, Radjabi A, van Trotsenburg M, Huber J, Kolbus A. Oct-4 expression in human endometrium. Mol Hum Reprod. 2006;12:7ā€“10.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Bentz EK, Kenning M, Schneeberger C, Kolbus A, Huber JC, Hefler LA, Tempfer CB. OCT-4 expression in follicular and luteal phase endometrium: a pilot study. Reprod Biol Endocrinol. 2010;8:38.

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  35. Ono M, Kajitani T, Uchida H, Arase T, Oda H, Nishikawa-Uchida S, Masuda H, Nagashima T, Yoshimura Y, Maruyama T. OCT4 expression in human uterine myometrial stem/progenitor cells. Hum Reprod. 2010;25:2059ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000;97:3213ā€“8.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  37. Deans RJ, Moseley AB. Mesenchymal stem cells biology and potential clinical uses. Exp Hematol. 2000;28:875ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhajm P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279ā€“95.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  39. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797ā€“806.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Cervello I, Gil-Sanchis C, Mas A, Faus A, Sanz J, et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS One. 2012;7(1):e30260. doi:10.1371/journal.pone.0030260.

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

The work was supported by the Ministry of Science and Higher Education Grant N N303804240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Miernik MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Miernik, K., KarasinĀ“ski, J. (2015). Existence of Mesenchymal-Like Somatic Stem Cells in the Porcine Uterus. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics