Skip to main content

Perception and Synthesis of Sound-Generating Materials

  • Chapter
  • First Online:
Multisensory Softness

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

The auditory perception of materials is a popular topic in the study of non-vocal sound-source perception. In this chapter, we review the empirical evidence on the mechanical and acoustical correlates of the perception of impacted stiff materials, and of the state of matter of sound-generating substances (solids, liquids, gases). As a whole, these studies suggest that recognition abilities are only highly accurate when differentiating between widely diverse materials (e.g. liquids vs. solids or plastics vs. metals) and that limitations in the auditory system, along with the possible internalization of biased statistics in the acoustical environment (e.g. clinking-glass sounds tend to be produced by small objects), might account for the less-than-perfect ability to differentiate between mechanically similar materials. This review is complemented by a summary of studies concerning the perception of deformable materials (fabrics and liquids) and the perceptual and motor-behaviour effects of auditory material-related information in audio-haptic contexts. The results of perceptual studies are the starting point for the development of interactive sound synthesis techniques for rendering the main auditory correlates of material properties, starting from physical models of the involved mechanical interactions. We review the recent literature dealing with contact sound synthesis in such fields as sonic interaction design and virtual reality. Special emphasis is given to softness/hardness correlates in impact sounds, associated with solid object resonances excited through impulsive contact. Synthesis methods for less studied sound-generating systems such as deformable objects (e.g. fabrics and liquids) and aggregate materials are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrien J-M (1991) The missing link: modal synthesis. In: De Poli G, Piccialli A, Roads C (eds) Representations of musical signals. MIT Press, Cambridge, pp 269–297

    Google Scholar 

  • An SS, James DL, Marschner S (2012) Motion-driven concatenative synthesis of cloth sounds. ACM Trans Graph (TOG) 31(4) (Article No. 102)

    Google Scholar 

  • Aramaki M, Marie C, Kronland-Martinet R, Ystad S, Besson M (2010) Sound categorization and conceptual priming for nonlinguistic and linguistic sounds. J Cognit Neurosci 22:2555–2569

    Article  Google Scholar 

  • Aramaki M, Besson M, Kronland-Martinet R, Ystad S (2011) Controlling the perceived material in an impact sound synthesizer. IEEE Trans Audio Speech Lang Process 19(2):301–314

    Article  Google Scholar 

  • Arnott SR, Cant JS, Dutton GN, Goodale MA (2008) Crinkling and crumpling: an auditory fmri study of material properties. Neuroimage 43:368–378

    Article  Google Scholar 

  • Ashby FG (1992) Multidimensional models of perception and cognition. Lawrence Erlbaum Associates, Hills-dale

    Google Scholar 

  • Attias H, Schreiner CE (1997) Temporal low-order statistics of natural sounds. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 27–33

    Google Scholar 

  • Avanzini F, Rath M, Rocchesso D, Ottaviani L (2003) Low-level sound models: resonators, interactions, surface textures. In: Rocchesso D, Fontana F (eds) The sounding object. Mondo Estremo, Firenze, pp 137–172

    Google Scholar 

  • Avanzini F, Crosato P (2006b) Integrating physically-based sound models in a multimodal rendering architecture. Comput Anim Virtual Worlds 17(3–4):411–419. doi:10.1002/cav.v17:3/4

    Article  Google Scholar 

  • Avanzini F, Crosato P (2006a) Haptic-auditory rendering and perception of contact stiffness. In: McGookin D, Brewster S (eds) Haptic and audio interaction design. Lecture Notes in Computer Science 4129/2006, Springer, Berlin. pp 24–35

    Google Scholar 

  • Avanzini F, Rocchesso D (2001) Controlling material properties in physical models of sounding objects. In: Proceedings of the international computer music conference (ICMC’01). La Habana, pp 91–94 (Available at http://www.soundobject.org)

  • Avanzini F, Rocchesso D (2004) Physical modeling of impacts: theory and experiments on contact time and spectral centroid. In: Proceedings of the sound and music computing conference (SMC2004), Paris, pp 287–293

    Google Scholar 

  • Ballas JA (1993) Common factors in the identification of an assortment of brief everyday sounds. J Exp Psychol Hum Percept Perform 19:250–267

    Article  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312

    Article  Google Scholar 

  • Bilbao S (2009) Numerical sound synthesis—finite difference schemes and simulation in musical acoustics. Wiley, Chichester

    MATH  Google Scholar 

  • Bilbao S, Hamilton B, Torin A, Webb C, Graham P, Gray A, Perry J (2013) Large scale physical modeling sound synthesis. In: Proceedings of the Stockholm music acoustic conference (SMAC2013), Stockholm, pp 593–600

    Google Scholar 

  • Bonneel N, Drettakis G, Tsingos N, Viaud-Delmon I, James D (2008) Fast modal sounds with scalable frequency-domain synthesis. ACM Trans Graph (TOG) 27(3) (Article no. 24)

    Google Scholar 

  • Bonneel N, Suied C, Viaud-Delmon I, Drettakis G (2010) Bimodal perception of audio-visual material properties for virtual environments. ACM Trans Appl Percept 7(1) (Article No. 1)

    Google Scholar 

  • Borg I, Groenen P (1997) Modern multidimensional scaling. Springer, New York

    Book  MATH  Google Scholar 

  • Cabe PA, Pittenger JB (2000) Human sensitivity to acoustic information from vessel filling. J Exp Psychol Hum Percept Perform 26:313–324

    Article  Google Scholar 

  • Carello C, Wagman JB, Turvey MT (2003) Acoustical specification of object properties. In: Anderson J, Anderson B (eds) Moving image theory: ecological considerations. Southern Illinois University Press, Carbondale

    Google Scholar 

  • Castiello U, Giordano BL, Begliomini C, Ansuini C, Grassi M (2010) When ears drive hands: the influence of contact sound on reaching to grasp. PLoS ONE 5:e12240

    Article  Google Scholar 

  • Chadwick JN, Zheng C, James DL (2012) Precomputed acceleration noise for improved rigid-body sound. ACM Trans Graph (TOG)31(4) (Article No. 103)

    Google Scholar 

  • Chatziioannou V, van Walstijn M (2013) An energy conserving finite difference scheme for simulation of collisions. In: Proceedings of the sound and music computing conference (SMC2013), Stockholm, pp 584–591

    Google Scholar 

  • Cho G, Casali JG, Yi E (2001) December). Effect of fabric sound and touch on human subjective sensation. Fibers Polym 2(4):196–202

    Article  Google Scholar 

  • Cho G, Kim C, Cho J, Ha J (2005) March). Physiological signal analyses of frictional sound by structural parameters of warp knitted fabrics. Fibers Polym 6(1):89–94

    Article  Google Scholar 

  • Cirio G, Marchal M, Lécuyer A, Cooperstock J (2013) Vibrotactile rendering of splashing fluids. ACM Trans Haptics 6(1):117–122

    Google Scholar 

  • Civille GV, Dus CA (1990) Development of terminology to describe the handfeel properties of paper and fabrics. J Sen Stud 5(1):19–32

    Google Scholar 

  • Csapo AB, Baranyi P (2010) An interaction-based model for auditory substitution of tactile percepts. In: Proceedings of IEEE international conference on intelligent engineering systems (INES 2010), Las Palmas of Gran Canaria, pp 248–253

    Google Scholar 

  • De Coensel B, Vanwetswinkel S, Botteldooren D (2011) Effects of natural sounds on the perception of road traffic noise. J Acoust Soc Am 129:EL148–EL153

    Google Scholar 

  • Delle Monache, S., Polotti, P., & Rocchesso, D. (2010, September). A toolkit for explorations in sonic interaction design. In: Proceedings of audio mostly conference (AM’10). PiteÃ¥ (Article no. 1)

    Google Scholar 

  • DiFranco DE, Beauregard GL, Srinivasan MA (1997) The effect of auditory cues on the haptic perception of stiffness in virtual environments. In: Proceedings of the ASME dynamic systems and control division, DSC, vol 61, pp 17–22

    Google Scholar 

  • Dombois F, Eckel G (2011) Audification. In: Hermann T, Hunt A, Neuhoff JG (eds) The sonification handbook. Logos Verlag, Berlin, pp 301–324

    Google Scholar 

  • Doutaut V, Matignon D, Chaigne A (1998) Numerical simulations of xylophones. II. Time-domain modeling of the resonator and of the radiated sound pressure. J Acoust Soc Am 104(3):1633–1647

    Google Scholar 

  • Drioli C, Rocchesso D (2012) Acoustic rendering of particle-based simulation of liquids in motion. J Multimodal User Interfaces 5(3–4):187–195

    Article  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  Google Scholar 

  • Fletcher NH, Rossing TD (1991) The physics of musical instruments. Springer, New York

    Book  Google Scholar 

  • Flores P, Claro JP, Lankarani HM (2008) Kinematics and dynamics of multibody systems with imperfect joints: Models and case studies. Springer, Berlin

    Google Scholar 

  • Fontana F, Bresin R (2003) Physics-based sound synthesis and control: crushing, walking and running by crumpling sounds. In: Proceedings of the colloquium on music informatics (CIM 2003), Firenze, pp 109–114

    Google Scholar 

  • Franinović K, Serafin S (eds) (2013) Sonic interaction design. MIT Press, Cambridge

    Google Scholar 

  • Freed DJ (1990) Auditory correlates of perceived mallet hardness for a set of recorded percussive events. J Acoust Soc Am 87:311–322

    Article  Google Scholar 

  • Gaver WW (1988) Everyday listening and auditory icons. Unpublished doctoral dissertation, University of California, San Diego

    Google Scholar 

  • Gaver WW (1993) What in the world do we hear? an ecological approach to auditory event perception. Ecol Psychol 5:1–29

    Article  Google Scholar 

  • Geffen MN, Gervain J, Werker JF, Magnasco MO (2011) Auditory perception of self-similarity in water sounds. Front Integr Neurosci 5

    Google Scholar 

  • Gibson JJ (1966) The senses considered as a perceptual system. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Giordano BL, Avanzini F, Wanderley M, McAdams S (2010) Multisensory integration in percussion performance. In: Actes du 10eme congrès français d’acoustique, Lyon (p. [CD-ROM]). Société Française d’Acoustique, Paris, France

    Google Scholar 

  • Giordano BL (2005) Sound source perception in impact sounds. Unpublished doctoral dissertation, University of Padova, Italy

    Google Scholar 

  • Giordano BL (2003) Material categorization and hardness scaling in real and synthetic impact sounds. In: Rocchesso D, Fontana F (eds) The sounding object. Mondo Estremo, Firenze, pp 73–93

    Google Scholar 

  • Giordano BL, McAdams S (2006) Material identification of real impact sounds: effects of size variation in steel, glass, wood and plexiglass plates. J Acoust Soc Am 119:1171–1181

    Article  Google Scholar 

  • Giordano BL, McDonnell J, McAdams S (2010) Hearing living symbols and nonliving icons: category-specificities in the cognitive processing of environmental sounds. Brain Cogn 73:7–19

    Article  Google Scholar 

  • Giordano BL, Rocchesso D, McAdams S (2010) Integration of acoustical information in the perception of impacted sound sources: the role of information accuracy and exploitability. J Exp Psychol Hum Percept Perform 36:462–479

    Article  Google Scholar 

  • Giordano BL, Guastavino C, Murphy E, Ogg M, Smith BK, McAdams S (2011) Comparison of methods for collecting and modeling dissimilarity data: applications to complex sound stimuli. Multivar Behav Res 46:779–811

    Article  Google Scholar 

  • Giordano BL, Visell Y, Yao HY, Hayward V, Cooperstock J, McAdams S (2012) Identification of walked-upon materials in auditory, kinesthetic, haptic and audio-haptic conditions. J Acoust Soc Am 131:4002–4012

    Article  Google Scholar 

  • Grassi M (2005) Do we hear size or sound? Balls dropped on plates. Percept Psychophys 67:274–284

    Article  Google Scholar 

  • Gygi B, Kidd GR, Watson CS (2007) Similarity and categorization of environmental sounds. Percept Psychophys 69:839–855

    Article  Google Scholar 

  • Handel S, Erickson ML (2001) A rule of thumb: the bandwidth for timbre invariance is one octave. Music Percept 19:121–126

    Article  Google Scholar 

  • Houix O (2003) Categorisation auditive des sources sonores. Unpublished doctoral dissertation, Université du Maine, France

    Google Scholar 

  • Houix H, Lemaitre G, Misdariis N, Susini P, Urdapilleta I (2012) A lexical analysis of environmental sound categories. J Exp Psychol Appl 18:52

    Article  Google Scholar 

  • Houle PA, Sethna JP (1996) Acoustic emission from crumpling paper. Phys Rev E 54(1):278–283

    Article  Google Scholar 

  • Huang G, Metaxas D, Govindaraj M (2003) Feel the "fabric": an audio-haptic interface. In: Proceedings of ACM siggraph/eurographics symposium on computer animation (SCA03). San Diego, pp 52–61

    Google Scholar 

  • Hunt KH, Crossley FRE (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 42:440–445

    Article  Google Scholar 

  • Jansson G (1993) Perception of the amount of fluid in a vessel shaken by hand. In: Valenti S, Pittinger J (eds) Studies in perception and action II. Posters presented at the VIIth international conference on event perception and action), pp 263–267

    Google Scholar 

  • Jansson G, Juslin P, Poom L (2006) Liquid-specific stimulus properties can be used for haptic perception of the amount of liquid in a vessel put in motion. Perception 35:1421–1432

    Article  Google Scholar 

  • Jeon JY, Lee JL, You J, Kang J (2012) Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces. J Acoust Soc Am 131:2101–2109

    Article  Google Scholar 

  • Kawabata S (1980) The standardization and analysis of hand evaluation. Textile Machinery Society of Japan, Osaka

    Google Scholar 

  • Kidd GR, Watson CS (2003) The perceptual dimensionality of environmental sounds. Noise Control Eng J 51:216–231

    Article  Google Scholar 

  • Kitagawa M, Dokko D, Okamura AM, Yuh DD (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129(1):151–158

    Google Scholar 

  • Klatzky RL, Pai DK, Krotkov EP (2000) Perception of material from contact sounds. Presence Teleoperators Virtual Environ 9(4):399–410

    Article  Google Scholar 

  • Kunkler-Peck AJ, Turvey MT (2000) Hearing shape. J Exp Psychol Hum Percept Perform 26:279–294

    Article  Google Scholar 

  • Lakatos S, McAdams S, Caussé R (1997) The representation of auditory source characteristics: simple geometric form. Percept Psychophys 59:1180–1190

    Article  Google Scholar 

  • Lambourg C, Chaigne A, Matignon D (2001) Time-domain simulation of damped impacted plates: II. Numerical Models and Results. J Acoust Soc Am 109(4):1433–1447

    Article  Google Scholar 

  • Lederman SJ (1979) Auditory texture perception. Perception 8(1):93–103

    Article  Google Scholar 

  • Lederman SJ, Klatzky RL (2004) Multisensory texture perception. In: Calvert G, Spence C, Stein B (eds) Handbook of multisensory processes. MIT Press, Cambridge, pp 107–122

    Google Scholar 

  • Lemaitre G, Heller LM (2012) Auditory perception of material is fragile while action is strikingly robust. J Acoust Soc Am 131:1337–1348

    Article  Google Scholar 

  • Lemaitre G, Heller LM (2013) Evidence for a basic level in a taxonomy of everyday action sounds. Exp Brain Res 226(2):253–264

    Google Scholar 

  • Lewis JW, Brefczynski JA, Phinney RE, Jannik JJ, DeYoe ED (2005) Distinct cortical pathways for processing tool versus animal sounds. J Neurosci 25:5148–5158

    Article  Google Scholar 

  • Lloyd B, Raghuvanshi N, Govindaraju NK (2011) Sound synthesis for impact sounds in video games. In: Proceedings of the ACM symposium on interactive 3D graphics and games (ACM I3D), San Francisco, pp 55–62

    Google Scholar 

  • Lutfi RA, Oh EL (1997) Auditory discrimination of material changes in a struck-clamped bar. J Acoust Soc Am 102:3647–3656

    Article  Google Scholar 

  • Lutfi RA (2001) Auditory detection of hollowness. J Acoust Soc Am 110:1010–1019

    Article  Google Scholar 

  • Lutfi RA (2007) Human sound source identification. In: Yost WA, Fay RR, Popper AN (eds) Auditory Percept Sound Sources. Springer, New York, NY, pp 13–42

    Chapter  Google Scholar 

  • Lutfi RA, Liu CJ (2007) Individual differences in source identification from synthesized impact sounds. J Acoust Soc Am 122:1017–1028

    Article  Google Scholar 

  • Lutfi RA, Stoelinga CNJ (2010) Sensory constraints on auditory identification of the material and geometric properties of struck bars. J Acoust Soc Am 127:350–360

    Article  Google Scholar 

  • Marchal M, Cirio G, Visell Y, Fontana F, Serafin S, Cooperstock J, Lécuyer A (2013) Multimodal rendering of walking over virtual grounds. In: Steinicke F, Visell Y, Campos J, Lécuyer A (eds) Human walking in virtual environments. Springer, New York, pp 263–295

    Google Scholar 

  • Marozeau J, de Cheveigné A, McAdams S, Winsberg S (2003) The dependency of timbre on fundamental frequency. J Acoust Soc Am 114:2946–2957

    Article  Google Scholar 

  • McAdams S, Chaigne A, Roussarie V (2004) The psychomecanics of simulated sound sources: material properties of impacted bars. J Acoust Soc Am 115:1306–1320

    Article  Google Scholar 

  • McAdams S, Roussarie V, Chaigne A, Giordano BL (2010) The psychomechanics of simulated sound sources: material properties of impacted thin plates. J Acoust Soc Am 128:1401–1413

    Article  Google Scholar 

  • Michaels CF, Carello C (1981) Direct perception. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Micoulaud-Franchi J-A, Aramaki M, Merer A, Cermolacce M, Ystad S, Kronland-Martinet R, Vion-Dury J (2011) Categorization and timbre perception of environmental sounds in schizophrenia. Psychiatry Res 189:149–152

    Article  Google Scholar 

  • Minnaert M (1933) On musical air-bubbles and the sounds of running water. Lond Edinb Dublin Philos Maga J Sci 16:235–248

    Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  • Moss W, Yeh H, Hong J-M, Lin MC, Manocha D (2010) Sounding liquids: automatic sound synthesis from fluid simulation. ACM Trans Graph 29(3) (Article No. 21)

    Google Scholar 

  • Nordahl R, Serafin S, Turchet L (2010) Sound synthesis and evaluation of interactive footsteps for virtual reality applications. In: Proceedings of the IEEE international conference on virtual reality (VR 2010), Waltham, pp 147–153

    Google Scholar 

  • O’Brien JF, Shen C, Gatchalian CM (2002) Synthesizing sounds from rigid-body simulations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation. San Antonio, TX, pp 175–181

    Google Scholar 

  • Papetti S, Avanzini F, Rocchesso D (2011) Numerical methods for a non-linear impact model: a comparative study with closed-form corrections. IEEE Trans Audio Speech Lang Process 19(7):2146–2158

    Article  Google Scholar 

  • Picard C, Frisson C, Faure F, Drettakis G, Kry P (2010) Advances in modal analysis using a robust and multiscale method. EURASIP J Adv Sig Process 2010 (Article ID 392782.)

    Google Scholar 

  • Raghuvanshi N, Lin MC (2007) Physically based sound synthesis for large-scale virtual environments. Comput Graph Appl IEEE 27(1):14–18

    Article  Google Scholar 

  • Ren Z, Yeh H, Klatzky R, Lin MC (2013) Auditory perception of geometry-invariant material properties. IEEE Trans Vis Comput Graph 19(4):557–566

    Article  Google Scholar 

  • Ren Z, Yeh H, Lin MC (2013) Example-guided physically based modal sound synthesis. ACM Trans Graph (TOG) 32(1) (Article No. 1)

    Google Scholar 

  • Rocchesso D, Ottaviani L, Fontana F, Avanzini F (2003) Size, shape, and material properties of sound models. In: Rocchesso D, Fontana F (eds) The sounding object. Mondo Estremo, Firenze, pp 95–110

    Google Scholar 

  • Rocchesso D (2011) Explorations in sonic interaction design. Logos Verlag, Berlin

    Google Scholar 

  • Smith JO III (2004) Virtual acoustic musical instruments: review and update. J New Music Res 33(3):283–304

    Article  Google Scholar 

  • Sreng J, Bergez F, Legarrec J, Lécuyer A, Andriot C (2007) Using an event-based approach to improve the multimodal rendering of 6dof virtual contact. In: Proceedings of the ACM symposium on virtual reality software and technology (VRST07), Newport Beach, CA, pp 165–173

    Google Scholar 

  • Steele KM, Williams AK (2006) Is the bandwidth for timbre invariance only one octave? Music Percept 23:215–220

    Article  Google Scholar 

  • Steinicke F, Visell Y, Campos J, Lecuyer A (eds) (2013) Human walking in virtual environments: perception, technology, and applications. Springer, New York

    Google Scholar 

  • Tucker S, Brown GJ (2003) Modelling the auditory perception of size, shape and material: applications to the classification of transient sonar sounds. In: Proceedings of the 114th convention of the Audio Engineering Society

    Google Scholar 

  • Turchet L, Serafin S (2014) Semantic congruence in audio-haptic simulation of footsteps. Appl Acoust 75:59–66

    Article  Google Scholar 

  • Turchet L, Serafin S, Cesari P (2013) Walking pace affected by interactive sounds simulating stepping on different terrains. ACM Trans Appl Percept 10:23

    Google Scholar 

  • Välimäki V, Pakarinen J, Erkut C, Karjalainen M (2006) Discrete-time modelling of musical instruments. Reports Prog Phys 69(1):1–78

    Article  Google Scholar 

  • van den Doel K (2004) Physically-based models for liquid sounds. In: Proceedings of the international conference on auditory display (ICAD04), Sydney

    Google Scholar 

  • van den Doel K (2005) Physically based models for liquid sounds. ACM Trans Appl Percept 2:534–546

    Google Scholar 

  • van den Doel K, Pai DK (1998) The sounds of physical shapes. Presence Teleoperators Virtual Environ 7(4):382–395

    Google Scholar 

  • van den Doel K, Pai DK (2004) Modal synthesis for vibrating objects. In: Greenebaum K (ed) Audio anecdotes. AK Peters, Natick

    Google Scholar 

  • van den Doel K, Kry PG, Pai DK (2001) FoleyAutomatic: physically-based sound effects for interactive simulation and animation. In: Proceedings of the international conference on computer graphics and interactive techniques (SIGGRAPH 01), Los Angeles, CA, pp 537–544

    Google Scholar 

  • Vanderveer NJ (1979) Ecological acoustics: Human perception of environmental sounds. Unpublished doctoral dissertation, Cornell University. (Dissertation Abstracts International, 40, 4543B. (University Microfilms No. 80–04-002))

    Google Scholar 

  • Velasco C, Jones R, King S, Spence C (2013) The sound of temperature: What information do pouring sounds convey concerning the temperature of a beverage. J Sens Stud 28:335–345

    Google Scholar 

  • Visell Y, Fontana F, Giordano BL, Nordahl R, Serafin S, Bresin R (2009) Sound design and perception in walking interactions. Int J Hum Comput Stud 67(11):947–959

    Article  Google Scholar 

  • Voss RF, Clarke J (1975) 1/f noise in speech and music. Nature 258:317–318

    Article  Google Scholar 

  • Warren WH, Verbrugge RR (1984) Auditory perception of breaking and bouncing events: a case study in ecological acoustics. J Exp Psychol Hum Percept Perform 10:704–712

    Article  Google Scholar 

  • Waterman NA, Ashby MF (1997) The materials selector, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Wildes R, Richards W (1988) Recovering material properties from sound. In: Richards W (ed) Nat Comput. MIT Press, Cambridge, MA, pp 356–363

    Google Scholar 

  • Yao H-Y, Hayward V, Ellis RE (2005) A tactile enhancement instrument for minimally invasive surgery. Comput Aided Surg 10(4):233–239

    Article  Google Scholar 

  • Zheng C, James DL (2009) Harmonic fluids. ACM Trans Graph (TOG) 28(3) (Article No. 37)

    Google Scholar 

  • Zheng C, James DL (2011) Toward high-quality modal contact sound. ACM Trans Graph (TOG) 30(4) (Article No. 38)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Marie Curie Intra-European Fellowships program (FP7 PEOPLE-2011-IEF-30153, project BrainInNaturalSound to Bruno L. Giordano). The authors wish to thank Laurie Heller and Guillaume Lemaitre for sharing the sound stimuli used to prepare Figs. 4.1 and 4.3, and Laurie Heller, Federico Fontana and Stephen McAdams for providing helpful feedback about earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno L. Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Giordano, B.L., Avanzini, F. (2014). Perception and Synthesis of Sound-Generating Materials. In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics