Skip to main content

Sensor Design

  • Chapter
  • First Online:
Engineering Haptic Devices

Abstract

Multiple sensors are applied in haptic devices designs. Even if they are not closed-loop controlled in a narrow sense of force or torque generation, they are used to detect movement ranges and limits or the detection of the presence of a user and its type of interaction with an object or human–machine interface (HMI). Almost any type of technical sensor had been applied in the context of haptic devices. Especially, the emerging market of gesture-based user interaction and integration of haptics due to ergonomic reasons extends the range of sensors potentially relevant for haptic devices. This chapter gives an introduction in technologies and design principles for force/torque sensors and addresses common types of positioning, velocity, and acceleration sensors. Further, sensors for touch and imaging sensors are addressed briefly in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For substrate material mainly (layer-) ceramics are used. Less frequent is the use of metals, as isolating layers have to be provided then.

  2. 2.

    Also single semiconducting elements without organic substrate are available. They are highly miniaturized (width of about \(230\,\upmu \text {m}\), length of about \(400\,\upmu \text {m}\)), but has to be insulated from the deformation element.

  3. 3.

    Face centered cubic.

  4. 4.

    By isolating arrays instead of single sensors in the last processing step.

  5. 5.

    The force can be calculated taking the contact area into account.

  6. 6.

    Due to the small electrodes a small basic capacitance is achieved, comp. equation in Fig. 10.20.

  7. 7.

    With respect to “force” component.

  8. 8.

    In vacuum it is equal to speed of light \(c_0 = 2.99792458\times 10^8\)m/s.

  9. 9.

    Both versions are possible: Measuring the transmitted and the reflected radiation.

  10. 10.

    This crystal is especially applicable for high temperature requirements.

  11. 11.

    A semiconducting material.

  12. 12.

    The examples presented here are discussed either for translatory and rotatory applications. But all principles may be applied to both, as a translation is just a rotation on a circle with infinite diameter.

References

  1. Amor A, Budde T, Gatzen H (2006) A magnetoelastic microtransformer-based microstrain gauge. Sens Actuators A Phys 129(1–2):41–44. doi:10.1016/j.sna.2005.09.043

    Article  Google Scholar 

  2. Arshak K, McDonagh D, Durcan M (2000) Development of new capacitive strain sensors based on thick film polymer and cermet technologies. Sens Actuat A Phys 79(2):102–114. doi:10.1016/S0924-4247(99)00275-7

  3. Arshak K et al (2006) Development of high sensitivity oxide based strain gauges and pressure sensors. J Mater Sci Mater Electron 17(9):767–778. doi:10.1007/s10854-006-0013-4

    Article  Google Scholar 

  4. Ballas R (2007) Piezoelectric multilayer beam bending actuators: static and dynamic behavior and aspects of sensor integration. Springer, Berlin, pp XIV, 358. ISBN: 978-3-540-32641-0

    Google Scholar 

  5. Bao M-H (2004) Micro mechanical transducers: pressure sensors, accelerometers and gyroscopes, vol 8, 2nd edn. Handbook of sensors and actuators 8. Elsevier, Amsterdam, pp XIV, 378. ISBN: 9780080524030

    Google Scholar 

  6. Barlian A et al (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97(3):513–552. doi:10.1109/JPROC.2009.2013612

    Article  Google Scholar 

  7. Berkelman P et al (2003) A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation. IEEE Trans Rob Autom 19(5):917–921. doi:10.1109/TRA.2003.817526

  8. Beyeler F et al (2007) Design and calibration of a MEMS sensor for measuring the force and torque acting on a magnetic microrobot. J Micromech Microeng IOP 18:025004 (2007). doi:10.1088/0960-1317/18/2/025004

  9. Botsis J et al (2004) Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials. Opt Lasers Eng 43. doi:10.1016/j.optlaseng.2004.04.009

  10. Brand U, Büttgenbach S (2002) Taktile dimensionelle Messtechnik für Komponenten der Mikrosystemtechnik. In: tm-Technisches Messen/Plattform für Methoden. Systeme und Anwendungen der Messtechnik 12. doi:10.1524/teme.2002.69.12.542

  11. Bray A, Barbato G, Levi R (1990) Theory and practice of force measurement. Monographs in physical measurement. Academic Press Inc., Waltham. ISBN: 978-0121284534

    Google Scholar 

  12. Burdea GC (1996) Force and touch feedback for virtual reality. Wiley-Interscience, New York

    Google Scholar 

  13. Caldwell DG, Lawther S, Wardle A (1996) Multi-modal cutaneous tactile feedback. In: Proceedings of the IEEE international conference on intelligent robots and systems. Diss, pp 465–472. doi:10.1109/IROS.1996.570820

  14. Calvert P et al (2007) Piezoresistive sensors for smart textiles. Electroact Polym Actuators Devices (EAPAD) 2007:65241i-8. doi:10.1117/12.715740

    Google Scholar 

  15. Chase T, Luo R (1995) A thin-film flexible capacitive tactile normal/shear force array sensor. In: Proceedings of the 1995 IEEE IECON 21st international conference on industrial electronics, control, and instrumentation, vol 2. Orlando, FL, pp 1196–1201. doi:10.1109/IECON.1995.483967

  16. Cochrane C et al (2007) Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7(4):473–492. doi:10.3390/s7040473

    Article  Google Scholar 

  17. Colgate J, Brown J (1994) Factors affecting the Z-Width of a haptic display. In: Proceedings of IEEE international conference on robotics and automation, vol 4, pp 3205–3210. doi:10.1109/ROBOT.1994.351077

  18. Cranny A et al (2005) Thick-film force, slip and temperature sensors for a prosthetic hand. Measur Sci Technol IOP 16:931–941. doi:10.1016/j.sna.2005.02.015

    Article  Google Scholar 

  19. Dahiya RS, Valle M (2013) Robotic Tactile Sensing. Springer, Berlin. doi:10.1007/978-94-007-0579-1

  20. Kurtz AD (1962) Adjusting crystal characteristics to minimaze temperature dependency. In: Dean M, Douglas RD (eds) Semiconductor and conventional strain gages. Academic Press Inc. New York, ISBN: 978-1114789906

    Google Scholar 

  21. Dölle M (2006) Field effect transistor based CMOS stress sensors. PhD thesis. IMTEK, University of Freiburg. ISBN: 978-3899594584

    Google Scholar 

  22. Ferdinand P et al (1997) Applications of bragg grating sensors in Europe. In: International conference on optical fiber sensors OFS. Wiliamsburg, Virginia. ISBN: 1-55752-485-8

    Google Scholar 

  23. First Sensor Technology GmbH (2009) T-Brücke. Technical report. First Sensor Technology GmbH. http://www.first-sensor.com/

  24. Fung Y-C (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York, pp XVIII, 568. ISBN: 0-387-97947-6; 3-540-97947-6

    Google Scholar 

  25. Gall M, Thielicke B, Poizat C (2005) Experimentelle Untersuchungen und FE-Simulation zum Sensor-und Aktuatoreinsatz von flächigen PZT-Funktionsmodulen. In: Deutsche Gesellschaft fürMaterialkunde e.V. http://publica.fraunhofer.de/dokumente/N-28844.html

  26. Gehin C, Barthod C, Teissyre Y (2000) Design and characterization of new force resonant sensor. Sens Actuat A Phys 84: 65–69. doi: 10.1016/S0924-4247(99)00359-3

  27. Goethals P (2008) Tactile feedback for robot assisted minimally invasive surgery: an overview. Technical report workshop, Eurohaptics conference. Department of Mechanical Engineering, K.U. Leuven

    Google Scholar 

  28. Gross D et al (2009) Technische Mechanik: Band 2: Elastostatik. Springer, Berlin. ISBN: 978- 3540243120

    Google Scholar 

  29. Hagedorn P et al (1998) The importance of rotor flexibility inultrasonic traveling wave motors. Smart MaterStruct 7:352–368. doi:10.1088/0964-1726/7/3/010

  30. Hasegawa Y, Shikida M et al (2006) An active tactile sensor for detecting mechanical characteristics of contacted objects. J Micromech Microeng IOP 16:1625–1632. doi:10.1088/0960-1317/16/8/026

    Article  Google Scholar 

  31. Hasser CJ, Daniels MW (1996) Tactile feedback with adaptive controller for a force-reflecting haptic display—Part I: design. In: Proceedings of the fifteenth southern biomedical engineering conference, pp 526–529. doi:10.1109/SBEC.1996.493294

  32. Hoffmann K (1985) Eine Einführung in die Technik des Messens mit Dehnungsmessstreifen. Hottinger Baldwin Messtechnik GmbH (HBM)

    Google Scholar 

  33. Hou L (1999) Erfassung und Kompensation von Fehlereffekten bei der statischen Kraftmessung mit monolithischen Nd:YAG-Laserkristallen. PhD thesis, Universität Kassel. https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-159?mode=full

  34. Inaudi D (2004) SOFO sensors for static and dynamic measurements. In: 1st FIG international symposium on engineering surveys for construction works and structural engineering. Nottingham. http://cordis.europa.eu/result/report/rcn/41123_en.html

  35. Keil S (1995) Beanspruchungsermittlung mit Dehnungsmessstreifen. Cuneus Verlag. ISBN: 978- 3980418805

    Google Scholar 

  36. Kerdok A (2006) Characterizing the nonlinear mechanical response of liver to surgical manipulation. PhD thesis, Harvard University, Cambridge. URL: http://biorobotics.harvard.edu/pubs/akthesis.pdf

  37. Kern T (2006) Haptisches Assistenzsystem für diagnostische und therapeutische Katheterisierungen. PhD thesis, Techische Universität Darmstadt, Institut für Elektromechanische Konstruktionen. http://tuprints.ulb.tu-darmstadt.de/761/

  38. Kersey A et al. (1997) Fiber grating sensors. J Lightwave Technol 15(8). doi:10.1109/50.618377

  39. Kim K et al (2007) Calibration of multi-axis MEMS force sensors using the shape-from-motion method. IEEE Sens J 7(3):344–351. doi:10.1109/JSEN.2006.890141

    Article  Google Scholar 

  40. Kizilirmak G (2007) Frei applizierbare MOSFET-Sensorfolie zur Dehnungsmessung". PhD thesis, RWTH Aachen. http://darwin.bth.rwth-aachen.de/opus3/volltexte/2007/1973/pdf/Kizilirmak_Goekhan.pdf

  41. Klages S (2004) Neue Sensorkonzepte zur Zungendruckmessung. Diplomarbeit, Darmstadt: Technische Universität Darmstadt, Institut für Elektromechanische Konstruktionen. http://tubiblio.ulb.tu-darmstadt.de/53658/

  42. Kon S, Oldham K, Horowitz R (2007) Piezoresistive and piezoelectric MEMS strain sensors for vibration detection. In: Proceedings of SPIE, vol 6529, p 65292V-1. doi:10.1117/12.715814

  43. Kunadt A et al (2010) Messtechnische Eigenschaften von Dehnungssensoren aus Kohlenstoff-Filamentgarn in einem Verbundwerkstoff. In: tm-TechnischesMessen/Plattform fürMethoden, Systeme und Anwendungen der Messtechnik 77(2):113–120. doi:10.1524/teme.2010.0014

  44. Lang U et al (2009) Piezoresistive properties of PEDOT: PSS. Microelectron Eng 86(3):330–334. doi:10.1016/j.mee.2008.10.024

    Article  Google Scholar 

  45. LaserComponents Group (2008) Faseroptische Sensoren. http://www.lasercomponents.com/de/1134.html

  46. Latessa G et al (2009) Piezoresistive behaviour of flexible PEDOT.PSS based sensors. Sens Actuat B Chem 139(2):304–309. DOI:http://dx.doi.org/10.1016/j.snb.2009.03.063

  47. Lenk A et al (ed) (2011) Electromechanical systems in microtechnology and mechatronics: electrical, mechanical and acoustic networks, their interactions and applications. Springer, Heidelberg

    Google Scholar 

  48. Luo F et al (1999) A fiber optic microbend sensor for distributed sensing application in the structural strain monitoring". Sens Actuat A Phys 75:41–44. doi:10.1016/S0924-4247(99)00043-6

  49. Maiwald M et al (2010) INKtelligent printed strain gauges. Sens Actuat A Phys 162(2):198–201. doi:10.1016/j.sna.2010.02.019

    Article  Google Scholar 

  50. Matsuzaki R, Todoroki A (2007) Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires. Sens Actuat A Phys 140(1):32–42. doi:10.1016/j.sna.2007.06.014

    Article  Google Scholar 

  51. Mehner J (2000) Entwurf in der Mikrosystemtechnik, vol 9. Dresdner Beiträge zur Sensorik. Dresden University Press. ISBN 9783931828479

    Google Scholar 

  52. Meiss T et al (2007) Fertigung eines Miniaturkraftsensors mit asymmetrischem Grundkrper zur Anwendung bei Katheterisierungen. In: MikroSystemTechnik. https://www.vde-verlag.de/proceedings-de/563061014.html

  53. Meiss T (2012) Silizium-Mikro-Kraftsensoren für haptische Katheterisierungen: Entwurf, Musterbau und Signalverarbeitung sowie erste Validierung des Assistenzsystems HapCath. PhD thesis, Technische Universität Darmstadt, Institut für Elektromechanische Konstruktionen. http://tuprints.ulb.tu-darmstadt.de/2952/

  54. Meißner P (2007) Optische Nachrichtentechnik I—Skriptum zur Vorlesung. Skriptum

    Google Scholar 

  55. Meißner P (2006) Seminar zu speziellen Themen der optischen Nachrichtentechnik—Simulatorische und experimentelle Untersuchungen optischer WDM Übertragungssysteme. Skriptum

    Google Scholar 

  56. Meschede D (2007) Optics, light and lasers: the practical approach to modern aspects of photonics and laser physics. 2nd edn. Optik, Licht und Laser engl. Weinheim: Wiley-VCH-Verlag, pp IX, 560. ISBN: 978-3-527-40628-9

    Google Scholar 

  57. Michel J (1995) Drehmomentmessung auf Basis funkabfragbarer Oberflächenwellen-Resonatoren. PhD thesis, Technische Universität München. http://www.mst.ei.tum.de/forschung/veroeffentlichungen/abgeschlossene-dissertationen.html

  58. Micron Instruments (2012) U-shaped semiconductor gage. http://www.microninstruments.com/

  59. Müller M (2009) Untersuchungen zu Kraft-Momenten-Sensoren auf Basis von Faser-Bragg-Gittern. PhD thesis, Technische Universität München. https://mediatum.ub.tum.de/doc/956469/956469.pdf

  60. Nakatani M, Howe R, Tacji S (2006) The fishbone tactile illusion. In: Eurohaptics. IEEE. Paris. http://lsc.univ-evry.fr/eurohaptics/upload/cd/papers/f46.pdf

  61. Nührmann D (1998) Das große Werkbuch Elektronik, vol 7. Franzis’ Verlag, Poing. ISBN: 3772365477

    Google Scholar 

  62. Oddo C et al (2007) Investigation on calibration methods for multi-axis, linear and redundant force sensors. Measur Sci Technol 18:623. doi:10.1088/0957-0233/18/3/011

  63. Palais JC (2005) Fiber optic communications, 5th edn. Pearson Prentice-Hall, Upper Saddle River, pp XIII, 441. ISBN: 0130085103

    Google Scholar 

  64. Pandey N, Yadav B (2006) Embedded fibre optic microbend sensor for measurement of high pressure and crack detection. Sens Actuat A Phys 128:33–36. doi:10.1016/j.sna.2006.01.010

    Article  Google Scholar 

  65. Partsch U (2002) LTCC-kompatible Sensorschichten und deren Applikation in LTCC-Drucksensoren, 1st edn, vol 9. Elektronik-Technologie in Forschung und Praxis 9. Templin/Uckermark: Detert, pp III, 163. ISBN: 3934142117

    Google Scholar 

  66. Pasquale M (2003) Mechanical sensors and actuators. Sens Actuat A Phys 106(1–3):142–148. doi:10.1016/S0924-4247(03)00153-5

    Article  Google Scholar 

  67. Peirs J et al (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuat A Phys 115(2–3):447–455. doi:10.1016/j.sna.2004.04.057

  68. Pfeifer G, Werthschützky R (1989) Drucksensoren. Verlag Technik. ISBN: 978-3341006603

    Google Scholar 

  69. Physik Instrumente (PI) GmbH (2010) Flächenwandlermodul. http://www.physikinstrumente.de/de/produkte/prdetail.php?sortnr=101790

  70. Ping L, Yumei W (1996) An arbitrarily distributed tactile sensor array using piezoelectric resonator. In: Instrumentation and measurement technology conference IMTC-96. IEEE conference proceedings, vol 1. Brussels, pp 502–505. doi:10.1109/IMTC.1996.507433

  71. Puers R (1993) Capacitive sensors: when and how to use them. Sens Actuat A Phys 37–38:93–105. doi:10.1016/0924-4247(93)80019-D

    Article  Google Scholar 

  72. Rausch J (2012) Entwicklung und Anwendung miniaturisierter piezoresistiver Dehnungsmesselemente. Dissertation, Technische Universität Darmstadt. http://tuprints.ulb.tudarmstadt.de/3003/1/Dissertation-Rausch-online.pdf

  73. Rausch J et al (2006) INKOMAN-Analysis of mechanical behaviour of liver tissue during intracorporal interaction. In: Gemeinsame Jahrestagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften für Biomedizinische Technik 6(9)

    Google Scholar 

  74. Reindl L et al (2001) Passive funkauslesbare sensoren (wireless passive radio sensors). In: TM—Technisches messen/plattform für methoden, Systeme und anwendungen der Messtechnik 68(5):240. doi:10.1524/teme.2001.68.5.240

  75. Rey P, Charvet P et al (1997) A high density capacitive pressure sensor array for fingerprint sensor application. In: International conference on solid-state sensors and actuators, IEEE. Chicago. doi:10.1109/SENSOR.1997.635738

  76. Rosen J, Solazzo M, Hannaford M (2002) Task decomposition of laparoscopic surgery for objective evaluation of surgical residents learning curve using hidden markov model. In: computer aided surgery 7. http://www.ncbi.nlm.nih.gov/pubmed/12173880

  77. Roths J, Kratzer P (2008) Vergleich zwischen optischen Faser-Bragg-Gitter-Dehnungssensoren und elektrischen Dehnungsmessstreifen. In: TM-Technisches Messen 75(12), pp 647–654. doi:10.1524/teme.2008.0903

  78. Russell R (1992) A tactile sensory skin for measuring surface contours. In: Tencon 1992 region 10 conference. IEEE, Melbourne. doi:10.1109/TENCON.1992.271943

  79. Saraf R, Maheshwari V (2006) High-resolution thin-film device to sense texture by touch. Technical report 5779, pp 1501–1504. http://www.sciencemag.org/content/312/5779/1501.full

  80. Sato M, Poupyrev I, Harrison C (2012) Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects. In: Proceedings of the 2012 ACMannual conference on human factors in computing systems, pp 483–492. doi:10.1145/2207676.2207743

  81. Schaumburg H (1992) Sensoren, vol 3. Werkstoffe und Bauelemente der Elektrotechnik 3. Stuttgart: Teubner Verlag, p 517. ISBN: 3519061252

    Google Scholar 

  82. Schlüter V (2010) Entwicklung eines experimentell gestützten Bewertungsverfahrens zur Optimierung und Charakterisierung der Dehnungsübertragung oberflächenapplizierter Faser-Bragg-Gitter- Sensoren. PhD thesis, Bundesanstalt für Materialforschung und -prüfung - BAM. http://www.bam.de/de/service/publikationen/publikationen_medien/dissertationen/diss_56_vt.pdf

  83. Schreier-Alt T (2006) Polymerverkapselung mechatronischer Systeme—Charakterisierung durch eingebettete Faser Bragg Gitter Sensoren". PhD thesis, Technische Universität Berlin, Fakultät IV - Elektrotechnik und Informatik. http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/1494

  84. Sektion für UT (1999) Minimal Invasive Chirurgie Tübingen. Verbundprojekt TAMIC—Entwicklung eines taktilen Mikrosensors für die Minimal Invasive Chirurgie - Schlussbericht. Technical report. https://www.yumpu.com/de/document/view/6617211/verbundprojekttamic-entwicklung-eines-taktilen-experimentelle-

  85. Sergio M et al (2003) A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J Solid-State Circ 38(6):966–968. doi:10.1109/JSSC.2003.811977

    Article  Google Scholar 

  86. Simone C (2002) Modelling of neddle insertion forces of percutaneous therapies. Johns Hopkins University, Diplomarbeit. Baltimore. doi:10.1109/ROBOT.2002.1014848, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1014848&tag=1

  87. Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Int Mater Syst Struct 11(4):246–257. doi:10.1106/8BFB-GC8P-XQ47-YCQ0

    Article  Google Scholar 

  88. Silicon Microstructures Incooperated (SMI) (2008) Pressure Sensors Products. http://www.si-micro.com/pressure-sensor-products.html

  89. Smith C (1954) Piezoresistance effect in germanium and silicon. Phys. Rev. Am Phys Soc 94(1):42–49. doi:10.1103/PhysRev.94.42

  90. Stavroulis S (2004) Rechnergestützter Entwurf von piezoresistiven Silizium-Drucksensoren mit realem mechanischem Wandler. Dissertation, Technische Universität Darmstadt, Institut für Elektromechanische Konstruktionen. http://tuprints.ulb.tu-darmstadt.de/473/

  91. Stockmann M (2000) Mikromechanische Analyse der Wirkungsmechanismen elektrischer Dehnungsmessstreifen. Institut für Mechanik der technischen Universiät Chemnitz. http://www.qucosa.de/recherche/frontdoor/?tx_slubopus4frontend[id]=urn:nbn:de:bsz:ch1-200000494

    Google Scholar 

  92. Su L, Chiang K, Lu C (2005) Microbend-induced mode coupling in a graded-index multimode fiber. Appl Opt 44(34). doi:10.1364/AO.44.007394

  93. Sun Y et al (2002) A bulkmicrofabricated multi-axis capacitive cellular force sensor using transverse comb drives. J Micromech Microeng IOP 12:832–840. doi:10.1088/0960-1317/12/6/314

    Article  Google Scholar 

  94. Suster M et al (2006) A high-performance MEMS capacitive strain sensing system. J Microelectromech Syst 15:1069–1077. doi:10.1109/JMEMS.2006.881489

    Article  Google Scholar 

  95. Tegin J, Wikander J (2005) Tactile sensing in intelligent robotic manipulation—a Review. Ind Rob 32(1):64–70. doi:10.1108/01439910510573318

    Article  Google Scholar 

  96. Tietze U, Schenk C (2002) Halbleiter-Schaltungstechnik, 12th edn. Springer, Berlin, pp XXV, 1606. ISBN: 3-540-42849-6

    Google Scholar 

  97. Toda K (1994) Characteristics of interdigital transducers for mechanical sensing and nondestructive testing. Sens Actuat A Phys 44(3):241–247. doi:10.1016/0924-4247(94)00809-4

    Article  Google Scholar 

  98. Tränkler H, Obermeier E (1998) Sensortechnik: Handbuch für Praxis undWissenschaft. Springer, Berlin. ISBN: 978-3-642-29941-4

    Google Scholar 

  99. Unterhofer K et al (2009) CMOS Stressmesssystem zur Charakterisierung von Belastungen auf MEMS Bauteile. In: MikroSystemTechnik KONGRESS 2009. VDE VERLAG GmbH. https://www.vde-verlag.de/proceedings-en/453183009.html

  100. Valdastri P et al (2005) Characterization of a novel hybrid silicon three-axial force sensor. Sens Actuat A Phys 123–124. In: Eurosensors XVIII 2004—The 18th European conference on Solid-State Transducers, pp 249–257. doi:10.1016/j.sna.2005.01.006

  101. Vasarhelyi G, Adama M et al (2006) Effects of the elastic cover on tactile sensor arrays. Sens Actuat A Phys 132:245–251. doi:10.1016/j.sna.2006.01.009

    Article  Google Scholar 

  102. Vasarhelyi G, Fodor B, Roska T (2007) Tactile sensing-processing—interface-cover geometry and the inverse-elastic problem. Sens Actuat A Phys 140:8–18. doi:10.1016/j.sna.2007.05.028

    Article  Google Scholar 

  103. Vazsonyi E et al (2005) Three-dimensional force sensor by novel alkaline etching technique. Sens Actuat A Phys 123–124:620–626. doi:10.1016/j.sna.2005.04.035

    Article  Google Scholar 

  104. Voyles R, Morrow J, Khosla P (1997) The shape from motion approach to rapid and precise force/- torque sensor calibration. Trans ASME-G-J Dyn Syst Measur Control 119(2):229–235. doi:10.1115/1.2801238

    Article  MATH  Google Scholar 

  105. Werthschützky R (2007) Mess- und Sensortechnik - Band II: Sensorprinzipien. Vorlesungsskriptum

    Google Scholar 

  106. Werthschützky R, Zahout C (2003) Angepasste Signalverarbeitung für piezoresistive Drucksensoren. In: tm-Technisches Messen/Plattform für Methoden, Systeme und Anwendungen der Messtechnik, pp 258–264. doi:10.1524/teme.70.5.258.20043

  107. Young W, Budynas R (2002) Roark’s formulas for stress and strain, vol 6. McGraw-Hill, New York. ISBN: 007072542X

    Google Scholar 

  108. Ziemann O (2007) POF-Handbuch: optische Kurzstrecken-Übertragungssysteme, 2nd edn. Springer, Berlin, pp XXX, 884. ISBN: 978-3540490937

    Google Scholar 

  109. Zwicker TU ((1989) Strain sensor with commercial SAWR. Sens Actuat A Phys 17(1–2):235–239. doi:10.1016/0250-6874(89)80085-X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Rausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Rausch, J., Kern, T.A., Hatzfeld, C. (2014). Sensor Design. In: Hatzfeld, C., Kern, T. (eds) Engineering Haptic Devices. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6518-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6518-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6517-0

  • Online ISBN: 978-1-4471-6518-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics