Skip to main content

The Role of the Noradrenergic System and Its Receptors in Levodopa-Induced Dyskinesia

  • Chapter
  • First Online:
Levodopa-Induced Dyskinesia in Parkinson's Disease

Abstract

Chronic dopamine replacement therapy with levodopa in Parkinson’s disease (PD) is often complicated by the emergence of deleterious motor sequelae including levodopa-induced dyskinesia (LID). The mechanism(s) underlying the pathogenesis of LID remain speculative; however, accumulating evidence has highlighted a role for the noradrenergic system. In this chapter, we evaluate the body of research that has implicated the NA system in the development and treatment of LID and discuss the following: (1) changes in the noradrenergic system originating in the locus coeruleus in the parkinsonian brain, (2) the use of experimental models with noradrenergic lesions for the investigation of LID, and (3) the efficacy of targeting noradrenergic receptors for the treatment of LID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loughlin SE, Foote SL, Grzanna R. Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets. Neuroscience. 1986;18:307–19.

    PubMed  CAS  Google Scholar 

  2. Room P, Postema F, Korf J. Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a fluorescent double labeling technique. Brain Res. 1981;221:219–30.

    PubMed  CAS  Google Scholar 

  3. Loughlin SE, Foote SL, Fallon JH. Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Res Bull. 1982;9:287–94.

    PubMed  CAS  Google Scholar 

  4. Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84.

    PubMed  Google Scholar 

  5. Mason ST, Fibiger HC. Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 1979;187:703–24.

    PubMed  CAS  Google Scholar 

  6. Mann DM. The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech Ageing Dev. 1983;23:73–94.

    PubMed  CAS  Google Scholar 

  7. Gaspar P. Anatomy of the noradrenergic pathways in the primate brain: alterations in Parkinson’s disease. In: Briley M, Marien M, editors. Noradrenergic mechanisms in Parkinson’s disease. Boca Raton: CRC Press; 1994. p. 73–88.

    Google Scholar 

  8. Margules DL, Lewis MJ, Dragovich JA, Margules AS. Hypothalamic norepinephrine: circadian rhythms and the control of feeding behavior. Science. 1972;178:640–3.

    PubMed  CAS  Google Scholar 

  9. Pfaus JG. Pathways of sexual desire. J Sex Med. 2009;6:1506–33.

    PubMed  CAS  Google Scholar 

  10. Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, et al. The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev. 2000;24:655–68.

    PubMed  CAS  Google Scholar 

  11. Arcos D, Sierra A, Nunez A, Flores G, Aceves J, Arias-Montano JA. Noradrenaline increases the firing rate of a subpopulation of rat subthalamic neurons through the activation of alpha1-adrenoceptors. Neuropharmacology. 2003;45:1070–9.

    PubMed  CAS  Google Scholar 

  12. Belujon P, Bezard E, Taupignon A, Bioulac B, Benazzouz A. Noradrenergic modulation of subthalamic nucleus activity: behavioral and electrophysiological evidence in intact and 6-hydroxydopamine-lesioned rats. J Neurosci. 2007;27:9595–606.

    PubMed  CAS  Google Scholar 

  13. Cash R, Ruberg M, Raisman R, Agid Y. Adrenergic receptors in Parkinson’s disease. Brain Res. 1984;322:269–75.

    PubMed  CAS  Google Scholar 

  14. Rommelfanger KS, Mitrano DA, Smith Y, Weinshenker D. Light and electron microscopic localization of alpha-1 adrenergic receptor immunoreactivity in the rat striatum and ventral midbrain. Neuroscience. 2009;158:1530–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Atlas D, Melamed E. Direct mapping of beta-adrenergic receptors in the rat central nervous system by a novel fluorescent beta-blocker. Brain Res. 1978;150:377–85.

    PubMed  CAS  Google Scholar 

  16. Nicholas AP, Pieribone VA, Hökfelt T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience. 1993;56:1023–39.

    PubMed  CAS  Google Scholar 

  17. Rosin DL, Talley EM, Lee A, Stornetta RL, Gaylinn BD, Guyenet PG, Lynch KR. Distribution of alpha 2C-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol. 1996;372:135–65.

    PubMed  CAS  Google Scholar 

  18. MacDonald E, Scheinin M. Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol. 1995;46:241–58.

    PubMed  CAS  Google Scholar 

  19. Zhang W, Ordway GA. The alpha2C-adrenoceptor modulates GABA release in mouse striatum. Brain Res Mol Brain Res. 2003;112:24–32.

    PubMed  CAS  Google Scholar 

  20. German DC, Manaye KF, White CL, Woodward DJ, McIntire DD, Smith WK, et al. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol. 1992;32:667–76.

    PubMed  CAS  Google Scholar 

  21. Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003;60:337–41.

    PubMed  Google Scholar 

  22. Hornykiewicz O, Kish SJ. Biochemical pathophysiology of Parkinson’s disease. Adv Neurol. 1986;45:19–34.

    Google Scholar 

  23. Patt S, Gerhard L. A golgi study of human locus coeruleus in normal brains and in Parkinson’s disease. Neuropathol Appl Neurobiol. 1993;19:519–23.

    PubMed  CAS  Google Scholar 

  24. Baloyannis SJ, Costa V, Baloyannis IS. Morphological alterations of the synapses in the locus coeruleus in Parkinson’s disease. J Neurol Sci. 2006;248:35–41.

    PubMed  Google Scholar 

  25. Bertrand E, Lechowicz W, Szpak GA, Dymecki J. Qualitative and quantitative analysis of locus coeruleus neuron in Parkinson’s disease. Folia Neuropathol. 1997;35:80–6.

    PubMed  CAS  Google Scholar 

  26. Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J Neurol. 2000;247 Suppl 2:II/3–10.

    Google Scholar 

  27. McMillan PJ, White SS, Franklin A, Greenup JL, Leverenz JB, Raskind MA, Szot P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson’s disease and Alzheimer’s disease. Brain Res. 2011;1373:240–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Shannak K, Rajput A, Rozdilsky B, Kish S, Gilbert J, Hornykiewicz O. Noradrenaline, dopamine and serotonin levels and metabolism in the human hypothalamus: observations in Parkinson’s disease and normal subjects. Brain Res. 1994;639:33–41.

    PubMed  CAS  Google Scholar 

  29. Pifl C, Kish SJ, Hornykiewicz O. Thalamic noradrenaline in Parkinson’s disease: deficits suggest role in motor and non-motor symptoms. Mov Disord. 2012;27:1618–24.

    PubMed  CAS  Google Scholar 

  30. Hurst JH, LeWitt PA, Burns RS, Foster NL, Lovenberg W. CSF dopamine-beta-hydroxylase activity in Parkinson’s disease. Neurology. 1985;3:565–8.

    Google Scholar 

  31. O’Connor DT, Cervenka JH, Stone RA, Levine GL, Parmer RJ, Franco-Bourland RE, et al. Dopamine beta-hydroxylase immunoreactivity in human cerebrospinal fluid: properties, relationship to central noradrenergic neuronal activity and variation in Parkinson’s disease and congenital dopamine beta-hydroxylase deficiency. Clin Sci. 1994;86:149–58.

    PubMed  Google Scholar 

  32. Eldrup E, Mogensen P, Jacobsen J, Pakkenberg H, Christensen NJ. CSF and plasma concentrations of free norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenylalanine (DOPA), and epinephrine in Parkinson’s disease. Acta Neurol Scand. 1995;92:116–21.

    PubMed  CAS  Google Scholar 

  33. Chia LG, Cheng FC, Kuo JS. Monoamines and their metabolites in plasma and lumbar cerebrospinal fluid of Chinese patients with Parkinson’s disease. J Neurol Sci. 1993;116:125–34.

    PubMed  CAS  Google Scholar 

  34. Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B. Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol. 1991;30:365–74.

    PubMed  CAS  Google Scholar 

  35. Cash R, Raisman R, Lanfumey L, Ploska A, Agid Y. Cellular localization of adrenergic receptors in rat and human brain. Brain Res. 1986;370:127–35.

    PubMed  CAS  Google Scholar 

  36. Caccia C, Achilli G, Buonamici M, Carpentieri M, Cervini MA, Maj R, et al. Receptor adaptive responsiveness in disease models: 6-OHDA lesioned and spontaneously hypertensive rats. J Recept Res. 1988;8:97–105.

    PubMed  CAS  Google Scholar 

  37. Johnson EW, Wolfe BB, Molinoff PB. Regulation of subtypes of beta-adrenergic receptors in rat brain following treatment with 6-hydroxydopamine. J Neurosci. 1989;9:2297–305.

    PubMed  CAS  Google Scholar 

  38. Reisine TD, Nagy JI, Beaumont K, Fibiger HC, Yamamura HI. The localization of receptor binding sites in the substantia nigra and striatum of the rat. Brain Res. 1979;177:241–52.

    PubMed  CAS  Google Scholar 

  39. Waeber C, Rigo M, Chinaglia G, Probst A, Palacios JM. Beta-adrenergic receptor subtypes in the basal ganglia of patients with Huntington’s chorea and Parkinson’s disease. Synapse. 1991;8:270–80.

    PubMed  CAS  Google Scholar 

  40. Ribas C, Miralles A, Busquets X, García-Sevilla JA. Brain alpha(2)-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA. Br J Pharmacol. 2001;132:1467–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Alachkar A, Brotchie JM, Jones OT. Changes in the mRNA levels of alpha(2A) and alpha (2C) adrenergic receptors in rat models of Parkinson’s disease and L-DOPA-induced dyskinesia. J Mol Neurosci. 2001;46:145–52.

    Google Scholar 

  42. Delaville C, De Deurwaerdère P, Benazzouz A. Noradrenaline and Parkinson’s disease. Front Syst Neurosci. 2011;5:1–12.

    Google Scholar 

  43. Grimbergen YA, Langston JW, Roos RA, Bloem BR. Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother. 2009;9:279–90.

    PubMed  CAS  Google Scholar 

  44. Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D. Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci. 2007;104:13804–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Mavridis M, Degryse AD, Lategan AJ, Marien MR, Colpaert FC. Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience. 1991;41:507–23.

    PubMed  CAS  Google Scholar 

  46. Srinivasan J, Schmidt WJ. Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur J Neurosci. 2003;17:2586–92.

    PubMed  CAS  Google Scholar 

  47. Archer T, Fredriksson A. Influence of noradrenaline denervation on MPTP-induced deficits in mice. J Neural Transm. 2006;113:1119–29.

    PubMed  CAS  Google Scholar 

  48. Fritschy JM, Grzanna R. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience. 1989;30:181–97.

    PubMed  CAS  Google Scholar 

  49. Wolfman C, Abó V, Calvo D, Medina J, Dajas F, Silveira R. Recovery of central noradrenergic neurons one year after the administration of the neurotoxin DSP4. Neurochem Int. 1994;25:395–400.

    PubMed  CAS  Google Scholar 

  50. Cheetham SC, Viggers JA, Butler SA, Prow MR, Heal DJ. [3H]nisoxetin-- radioligand for noradrenaline reuptake sites: correlation with inhibition of [3H]noradrenaline uptake and effect of DSP-4 lesioning and antidepressant treatments. Neuropharmacology. 1996;35:63–70.

    Google Scholar 

  51. Ross SB, Johansson JG, Lindberg B, Dahlbom R. Cyclizing compounds. I. Tertiary N-(2-bromobenzyl-N-haloalkylamines) with adrenergic blocking action. Acta Pharm Suec. 1973;10:29–42.

    PubMed  CAS  Google Scholar 

  52. Fritschy JM, Grzanna R. Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system? Prog Brain Res. 1991;88:257–68.

    PubMed  CAS  Google Scholar 

  53. Szot P, Miguelez C, White SS, Franklin A, Sikkema C, Wilkinson CW, et al. A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuroscience. 2010;166:279–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Marin C, Aguilar E, Bonastre M. Effect of locus coeruleus denervation on levodopa-induced motor fluctuations in hemiparkinsonian rats. J Neural Transm. 2008;115:1133–9.

    PubMed  CAS  Google Scholar 

  55. Pérez V, Marin C, Rubio A, Aguilar E, Barbanoj M, Kulisevsky J. Effect of the additional noradrenergic neurodegeneration to 6-OHDA-lesioned rats in levodopa-induced dyskinesias and in cognitive disturbances. J Neural Transm. 2009;116:1257–66.

    PubMed  Google Scholar 

  56. Srinivasan J, Schmidt WJ. Behavioral and neurochemical effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson’s disease. Behav Brain Res. 2004;151:191–9.

    PubMed  CAS  Google Scholar 

  57. Pérez V, Sosti V, Rubio A, Barbanoj M, Rodríguez-Alvarez J, Kulisevsky J. Modulation of the motor response to dopaminergic drugs in a parkinsonian model of combined dopaminergic and noradrenergic degeneration. Eur J Pharmacol. 2007;576:83–90.

    PubMed  Google Scholar 

  58. Hallman H, Sundström E, Jonsson G. Effects of the noradrenaline neurotoxin DSP 4 on monoamine neurons and their transmitter turnover in rat CNS. J Neural Transm. 1984;60:89–102.

    PubMed  CAS  Google Scholar 

  59. Fornai F, Bassi L, Torracca MT, Alessandrì MG, Scalori V, Corsini GU. Region- and neurotransmitter-dependent species and strain differences in DSP-4-induced monoamine depletion in rodents. Neurodegeneration. 1996;5:241–9.

    PubMed  CAS  Google Scholar 

  60. Miguelez C, Aristieta A, Cenci MA, Ugedo L. The locus coeruleus is directly implicated in L-DOPA induced dyskinesia in Parkinsonian rats: An electrophysiological and behavioural study. PLoS One. 2011;6:1–12.

    Google Scholar 

  61. Pérez V, Sosti V, Rubio A, Barbanoj M, Gich I, Rodríguez-Alvarez J, et al. Noradrenergic modulation of the motor response induced by long-term levodopa administration in Parkinsonian rats. J Neural Transm. 2009;116:867–74.

    PubMed  Google Scholar 

  62. Nishi K, Kondo T, Narabayashi H. Destruction of norepinephrine terminals in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice reduces locomotor activity induced by L-dopa. Neurosci Lett. 1991;123:244–7.

    PubMed  CAS  Google Scholar 

  63. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001;65:135–72.

    PubMed  CAS  Google Scholar 

  64. Deumens R, Blokland A, Prickaerts J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002;175:303–17.

    PubMed  CAS  Google Scholar 

  65. Barnum CJ, Bhide N, Lindenbach D, Surrena MA, Goldenberg AA, Tignor S, et al. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacol Biochem Behav. 2012;100:607–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Fulceri F, Biagioni F, Ferrucci M, Lazzeri G, Bartalucci A, Galli V, et al. Abnormal involuntary movements (AIMs) following pulsatile dopaminergic stimulation: severe deterioration and morphological correlates following the loss of locus coeruleus neurons. Brain Res. 2007;1135:219–29.

    PubMed  CAS  Google Scholar 

  67. Pinnock RD. Sensitivity of compacta neurones in the rat substantia nigra slice to dopamine agonists. Eur J Pharmacol. 1983;96:269–76.

    PubMed  CAS  Google Scholar 

  68. Buck K, Ferger B. Comparison of intrastriatal administration of noradrenaline and l-DOPA on dyskinetic movements: a bilateral reverse in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. Neuroscience. 2009;159:16–20.

    PubMed  CAS  Google Scholar 

  69. Raiteri M, Del Carmine R, Bertollini A, Levi G. Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol. 1977;41:133–43.

    PubMed  CAS  Google Scholar 

  70. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–95.

    PubMed  CAS  Google Scholar 

  71. Arai A, Tomiyama M, Kannari K, Kimura T, Suzuki C, Watanabe M, et al. Reuptake of L-DOPA-derived extracellular DA in the striatum of a rodent model of Parkinson’s disease via norepinephrine transporter. Synapse. 2008;62:632–5.

    PubMed  CAS  Google Scholar 

  72. Pan WH, Yang SY, Lin SK. Neurochemical interaction between dopaminergic and noradrenergic neurons in the medial prefrontal cortex. Synapse. 2004;53:44–52.

    PubMed  CAS  Google Scholar 

  73. Grenhoff J, North RA, Johnson SW. Alpha 1-adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice. Eur J Neurosci. 1995;7:1707–13.

    PubMed  CAS  Google Scholar 

  74. Sommermeyer H, Frielingsdorf J, Knorr A. Effects of prazosin on the dopaminergic neurotransmission in rat brain. Eur J Pharmacol. 1995;276:267–70.

    PubMed  CAS  Google Scholar 

  75. Buck K, Ferger B. The selective alpha1 adrenoceptor antagonist HEAT reduces L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease. Synapse. 2010;64:117–26.

    PubMed  CAS  Google Scholar 

  76. Paquette MA, Foley K, Brudney EG, Meshul CK, Johnson SW, Berger SP. The sigma-1 antagonist BMY-14802 inhibits L-DOPA-induced abnormal involuntary movements by a WAY-100635-sensitive mechanism. Psychopharmacology (Berl). 2009;204:743–54.

    CAS  Google Scholar 

  77. Visanji NP, Fox SH, Johnston TH, Millan MJ, Brotchie JM. Alpha1-adrenoceptors mediate dihydroxyphenylalanine-induced activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaques. J Pharmacol Exp Ther. 2009;328:276–83.

    PubMed  CAS  Google Scholar 

  78. Mavridis M, Colpaert FC, Millan MJ. Differential modulation of (+)-amphetamine-induced rotation in unilateral substantia nigra-lesioned rats by alpha 1 as compared to alpha 2 agonists and antagonists. Brain Res. 1991;562:216–24.

    PubMed  CAS  Google Scholar 

  79. Haapalinna A, Leino T, Heinonen E. The alpha 2-adrenoceptor antagonist atipamezole potentiates anti-Parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:342–51.

    PubMed  CAS  Google Scholar 

  80. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev. 1995;20:128–54.

    PubMed  CAS  Google Scholar 

  81. Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA. Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res. 1990;1990(513):43–59.

    Google Scholar 

  82. Anden N, Grabowska M. Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur J Pharmacol. 1976;39:275–82.

    PubMed  CAS  Google Scholar 

  83. Sallinen J, Link RE, Haapalinna A, Viitamaa T, Kulatunga M, Sjoholm B, et al. Genetic alteration of alpha 2C-adrenoceptor expression in mice: influence on locomotor hypothermic, and neurochemical effects of dexmedetomidine, a subtypenonselective alpha 2-adrenoceptor agonist. Mol Pharmacol. 1997;51:36–46.

    PubMed  CAS  Google Scholar 

  84. Dekundy A, Lundblad M, Danysz W, Cenci MA. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res. 2007;179:76–89.

    PubMed  CAS  Google Scholar 

  85. Gomez-Mandilla B, Bedard PJ. Effect of nondopaminergic drugs on L-dopa induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol. 1993;16:418–27.

    Google Scholar 

  86. Huotari M, Kukkonen K, Liikka N, Potasev T, Raasmaja A, Männistö PT. Effects of histamine H(3)-ligands on the levodopa-induced turning behavior of hemiparkinsonian rats. Parkinsonism Relat Disord. 2000;6:159–64.

    PubMed  Google Scholar 

  87. Chopin P, Colpaert FC, Marien M. Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. J Pharmacol Exp Ther. 1999;288:798–804.

    PubMed  CAS  Google Scholar 

  88. Holmberg M, Scheinin M, Kurose H, Miettinen R. Adrenergic alpha2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. Neuroscience. 1999;93:1323–33.

    PubMed  CAS  Google Scholar 

  89. Lu L, Ordway GA. Alpha2C-adrenoceptors mediate inhibition of forskolin-stimulated cAMP production in rat striatum. Brain Res Mol Brain Res. 1997;52:228–34.

    PubMed  CAS  Google Scholar 

  90. Zhang W, Klimek V, Farley JT, Zhu MY, Ordway GA. alpha2C adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine. J Pharmacol Exp Ther. 1999;289:1286–92.

    PubMed  CAS  Google Scholar 

  91. Hara M, Fukui R, Hieda E, Kuroiwa M, Bateup HS, Kano T, et al. Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J Neurochem. 2010;4:1046–59.

    Google Scholar 

  92. Buck K, Voehringer P, Ferger B. The alpha(2) adrenoceptor antagonist idazoxan alleviates L-DOPA-induced dyskinesia by reduction of striatal dopamine levels: an in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. J Neurochem. 2010;112:444–52.

    PubMed  CAS  Google Scholar 

  93. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002;15:120–32.

    PubMed  CAS  Google Scholar 

  94. Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM. The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of L-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord. 1999;14:744–53.

    PubMed  CAS  Google Scholar 

  95. Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, et al. Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord. 2003;18:872–83.

    PubMed  Google Scholar 

  96. Grondin R, Hadj Tahar A, Doan VD, Ladure P, Bédard PJ. Noradrenoceptor antagonism with idazoxan improves L-dopa-induced dyskinesias in MPTP monkeys. Naunyn Schmiedebergs Arch Pharmacol. 2000;361:181–6.

    PubMed  CAS  Google Scholar 

  97. Lewitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012;79:163–9.

    PubMed  CAS  Google Scholar 

  98. Manson AJ, Iakovidou E, Lees AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15:336–7.

    PubMed  CAS  Google Scholar 

  99. Rascol O, Arnulf I, Peyro-Saint Paul H, Brefel-Courbon C, Vidailhet M, Thalamas C, et al. Idazoxan, an alpha-2 antagonist, and L-DOPA-induced dyskinesias in patients with Parkinson’s disease. Mov Disord. 2001;16:708–13.

    PubMed  CAS  Google Scholar 

  100. Domino EF, Ni L, Colpaert F, Marien M. Effects of (+/−)-idazoxan alone and in combination with L-DOPA methyl ester in MPTP-induced hemiparkinsonian monkeys. Receptors Channels. 2003;9:335–8.

    PubMed  CAS  Google Scholar 

  101. Fox SH, Henry B, Hill MP, Peggs D, Crossman AR, Brotchie JM. Neural mechanisms underlying peak-dose dyskinesia induced by levodopa and apomorphine are distinct: evidence from the effects of the alpha(2) adrenoceptor antagonist idazoxan. Mov Disord. 2001;16:642–50.

    PubMed  CAS  Google Scholar 

  102. Johnston TH, Fox SH, Piggott MJ, Savola JM, Brotchie JM. The α2 adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Mov Disord. 2010;25:2084–93.

    PubMed  Google Scholar 

  103. Hertel P, Nomikos GG, Svensson TH. Idazoxan preferentially increases dopamine output in the rat medial prefrontal cortex at the nerve terminal level. Eur J Pharmacol. 1999;371:153–8.

    PubMed  CAS  Google Scholar 

  104. Hudson AL, Robinson ES, Lalies MD, Tyacke RJ, Jackson HC, Nutt DJ. In vitro and in vivo approaches to the characterization of the alpha2-adrenoceptor. J Auton Pharmacol. 1999;19:311–20.

    PubMed  CAS  Google Scholar 

  105. Alachkar A, Brotchie J, Jones OT. alpha2-Adrenoceptor-mediated modulation of the release of GABA and noradrenaline in the rat substantia nigra pars reticulata. Neurosci Lett. 2006;395:138–42.

    PubMed  CAS  Google Scholar 

  106. Rainbow TC, Parsons B, Wolfe BB. Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A. 1984;81:1585–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Kuno S, Mizuta E, Nishida J, Takechi M. Therapeutic effects of arotinolol, a beta-adrenergic blocker, on tremor in MPTP-induced parkinsonian monkeys. Clin Neuropharmacol. 1992;15:381–6.

    PubMed  CAS  Google Scholar 

  108. Lyons KE, Pahwa R. Pharmacotherapy of essential tremor: an overview of existing and upcoming agents. CNS Drugs. 2008;22:1037–45.

    PubMed  CAS  Google Scholar 

  109. Carpentier AF, Bonnet AM, Vidailhet M, Agid Y. Improvement of levodopa-induced dyskinesia by propranolol in Parkinson’s disease. Neurology. 1996;46:1548–51.

    PubMed  CAS  Google Scholar 

  110. Lindenbach D, Ostock CY, Eskow Jaunarajs KL, Dupre KB, Barnum CJ, Bhide N, et al. Behavioral and cellular modulation of L-DOPA-induced dyskinesia by beta-adrenoceptor blockade in the 6-hydroxydopamine-lesioned rat. J Pharmacol Exp Ther. 2011;337:755–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Reisine TD, Chesselt MF, Lubetzki C, Cheramy A, Glowinski J. A role for striatal beta-adrenergic receptors in the regulation of dopamine release. Brain Res. 1982;241:123–30.

    PubMed  CAS  Google Scholar 

  112. Alexander GM, Schwartzman RJ, Nukes TA, Grothusen JR, Hooker MD. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson’s disease. Neurology. 1994;44:1511–3.

    PubMed  CAS  Google Scholar 

  113. Uc EY, Lambert CP, Harik SI, Rodnitzky RL, Evans WJ. Albuterol improves response to levodopa and increases skeletal muscle mass in patients with fluctuating Parkinson disease. Clin Neuropharmacol. 2003;26:207–12.

    PubMed  CAS  Google Scholar 

  114. Hishida R, Kurahashi K, Narita S, Baba T, Matsunaga M. “Wearing-off” and beta 2-adrenoceptor agonist in Parkinson’s disease. Lancet. 1992;339:870.

    PubMed  CAS  Google Scholar 

  115. Meitzen J, Luoma JI, Stern CM, Mermelstein PG. β1-Adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem. 2011;116:984–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma Jr FJ, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.

    PubMed  CAS  Google Scholar 

  117. Cenci MA, Lee CS, Bjorklund A. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci. 1998;10:2694–706.

    PubMed  CAS  Google Scholar 

  118. Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, et al. Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse. 2000;35:79–95.

    PubMed  CAS  Google Scholar 

  119. Newman-Tancredi A, Nicolas JP, Audinot V, Gavaudan S, Verrièle L, Touzard M, et al. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:197–206.

    PubMed  CAS  Google Scholar 

  120. De Vos H, Convents A, De Keyser J, De Backer JP, Van Megen IJ, Ebinger G, et al. Autoradiographic distribution of alpha 2 adrenoceptors, NAIBS, and 5-HT1A receptors in human brain using [3H]idazoxan and [3H]rauwolscine. Brain Res. 1991;566:13–20.

    PubMed  Google Scholar 

  121. Pertovaara A, Haapalinna A, Sirviö J, Virtanen R. Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS Drug Rev. 2005;11:273–88.

    PubMed  CAS  Google Scholar 

  122. Eskow KL, Gupta V, Alam S, Park JY, Bishop C. The partial 5-HT(1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav. 2007;87:306–14.

    PubMed  CAS  Google Scholar 

  123. Bishop C, Krolewski DM, Eskow KL, Barnum CJ, Dupre KB, Deak T, et al. Contribution of the striatum to the effects of 5-HT1A receptor stimulation in L-DOPA-treated hemiparkinsonian rats. J Neurosci Res. 2009;87:1645–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Huot P, Brotchie JM. 5-HT(1A) receptor stimulation and L-DOPA-induced dyskinesia in Parkinson’s disease: bridging the gap between serotonergic and glutamatergic mechanisms. Exp Neurol. 2011;231:195–8.

    PubMed  CAS  Google Scholar 

  125. Taylor JL, Bishop C, Walker PD. Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav. 2005;81:887–93.

    PubMed  CAS  Google Scholar 

  126. Koprich JB, Huot P, Fox SH, Jarvie K, Lang AE, Seeman P, et al. The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in parkinsonian macaques. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:151–6.

    PubMed  CAS  Google Scholar 

  127. Alachkar A, Brotchie JM, Jones OT. Binding of dopamine and 3-methoxytyramine as l-DOPA metabolites to human alpha(2)-adrenergic and dopaminergic receptors. Neurosci Res. 2010;67:245–9.

    PubMed  CAS  Google Scholar 

  128. Antkiewicz-Michaluk L, Ossowska K, Romańska I, Michaluk J, Vetulani J. 3-Methoxytyramine, an extraneuronal dopamine metabolite plays a physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Eur J Pharmacol. 2008;599:32–5.

    PubMed  CAS  Google Scholar 

  129. Stuebner E, Vichayanrat E, Low DA, Mathias CJ, Isenmann S, Haensch CA. Twenty-four hour non-invasive ambulatory blood pressure and heart rate monitoring in Parkinson’s disease. Front Neurol. 2013;4(49):1–14.

    Google Scholar 

  130. Oka H, Morita M, Onouchi K, Yoshioka M, Mochio S, Inoue K. Cardiovascular autonomic dysfunction in dementia with Lewy bodies and Parkinson’s disease. J Neurol Sci. 2007;254:72–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bishop PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ostock, C.Y., Bishop, C. (2014). The Role of the Noradrenergic System and Its Receptors in Levodopa-Induced Dyskinesia. In: Fox, S., Brotchie, J. (eds) Levodopa-Induced Dyskinesia in Parkinson's Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6503-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6503-3_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6502-6

  • Online ISBN: 978-1-4471-6503-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics