Skip to main content

Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs

  • Chapter
  • First Online:
Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

  • 1684 Accesses

Abstract

Polymer light-emitting diodes (PLEDs) and organic photovoltaics (OPVs) are considered as next generation electronics due to the low-cost, flexibility, and lightweight features. However, there are challenges such as large-area processing technologies, film coating quality, and long-term stability toward scalable and low-cost polymer electronics. This chapter deals with the various scalable processing methods and evaluates the coating performance as well as electrical performances in polymer electronics fabricated by the solution processes. Special attention on coating instability is elaborated in the context of important material components in PLEDs and OPVs. Proper coating techniques can be chosen by considering the thickness requirement of each functional layer with good reproducibility. Additionally, we will evaluate mechanical/optical characteristics of the polymer anode for ITO-free electrodes; and introduce the metal mesh in combination with conductive polymers as the ITO-free transparent electrode for large area applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  Google Scholar 

  2. Baldo MA, O’Brien DF, Thompson ME, Forrest SR (1999) Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys Rev B 60:14422–14428

    Article  Google Scholar 

  3. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  4. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595

    Google Scholar 

  5. Espinosa N, García-Valverdea R, Krebs FC (2011) Life-cycle analysis of product integrated polymer solar cells. Energy Environ Sci 4:1547–1557

    Article  Google Scholar 

  6. Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38:2040–2045

    Article  Google Scholar 

  7. Weinstein SJ, Ruschak KJ (2004) Coating flows. Annu Rev Fluid Mech 36:29–53

    Article  Google Scholar 

  8. Landau L, Levich B (1942) Dragging of a liquid by a moving plate. Acta Physicochim URSS 17:42–54

    Google Scholar 

  9. Stalder R, Grand C, Subbiah J, So F, Reynolds JR (2012) An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells. Polym Chem 3:89–92

    Article  Google Scholar 

  10. Youn H, Yang M (2010) Solution-processed polymer light-emitting diodes utilizing a ZnO/organic ionic interlayer with Al cathode. Appl Phys Lett 97:243302

    Article  Google Scholar 

  11. Yu Z, Zhang Q, Chen LLQ, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    Google Scholar 

  12. Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong BH, Ahn J-H, Lee T-W (2011) Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photon 6:105–110

    Article  Google Scholar 

  13. Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ (2006) Nano Lett 6:2472–2477

    Article  Google Scholar 

  14. Lee BH, Park SH, Back H, Lee K (2011) Novel film-casting method for high-performance flexible polymer electrodes. Adv Mater 21:287–493

    Google Scholar 

  15. Shin S, Yang M, Guo LJ, Youn H (2013) Noble roll-to-roll cohesive, coated, flexible, high-efficiency polymer light-emitting diodes utilizing ITO-free polymer anodes. Small 9:1–9

    Google Scholar 

  16. Youn H, Jeon K, Shin S, Yang M (2012) All-solution blade-slit coated polymer light-emitting diodes. Org Electron 13:1470–1478

    Article  Google Scholar 

  17. Choi S, Potscavage WJ, Kippelen B (2009) Area-scaling of organic solar cells. J Appl Phys 106:054507

    Article  Google Scholar 

  18. Yang Y, Jin S, Medvedeva JE, Ireland JR, Metz AW, Ni J, Hersam MC, Freeman AJ, Marks TJ (2006) CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. JACS 127:8796–8804

    Article  Google Scholar 

  19. Cheknane A, Hilal HS, Djeffal F, Benyoucef B, Charles J-P (2008) An equivalent circuit approach to organic solar cell modelling. Microelectron J 39:1173–1180

    Article  Google Scholar 

  20. Servaites JD, Yeganeh S, Marks TJ, Ratner MA (2010) Efficiency Enhancement in organic photovoltaic cells: consequences of optimizing series resistance. Adv Funct Mater 20:97–104

    Google Scholar 

  21. Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Sol Energy Mater Sol Cells 93:422–441

    Article  Google Scholar 

  22. Angmo D, Hösel M, Krebs FC (2012) All solution processing of ITO-free organic solar cell modules directly on barrier foil. Sol Energy Mater Sol Cells 107:329–336

    Article  Google Scholar 

  23. Kuang P, Park J-M, Leung W, Mahadevapuram RC, Nalwa KS, Kim T-G, Chaudhary S, Ho K-M, Constant K (2011) A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance. Adv Mater 23:2469–2473

    Article  Google Scholar 

  24. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci SN, Glatthaar M, Meyer T, Meyer A (2007) Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells 91:379–384

    Article  Google Scholar 

  25. Kang M-G, Kim M-S, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20:4408–4413

    Article  Google Scholar 

  26. Kang M-G, Park HJ, Ahn S-H, Guo LJ (2010) Transparent Cu nanowire mesh electrode on a flexible substrate fabricated by simple transfer printing and its application in organic solar cell. Sol Energy Mater Sol Cells 94:1179–1184

    Article  Google Scholar 

  27. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P et al (2012) A universal method to produce low–work function electrodes for organic electronics. Science 336:327–332

    Google Scholar 

  28. Zhang Y, Zou J, Yip H-L, Chen K-S, Zeigler DF, Sun Y, Jen AK-Y (2011) Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem Mater 23:2289–2291

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jay Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Youn, H., Kim, H., Guo, L.J. (2014). Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics