Skip to main content

Drug-Induced Chorea

  • Chapter
  • First Online:
Chorea

Abstract

A large number of drugs have been involved in the induction of a wide variety of movement disorders including parkinsonism, akathisia, tics, myoclonus, tremor, dystonia, and choreic movements. Onset can be acute, subacute, or insidious. Involuntary movements may present in isolation or as a part of a more generalized neurological or systemic condition.

Drug-induced choreas occur mainly in two circumstances, mostly in psychotic patients treated with typical neuroleptics and in parkinsonian patients in the long-term treatment with levodopa. In both cases, the diagnosis is obvious and the current therapeutic strategies are outlined in this chapter. The relationship between the drug intake and the appearance of the movement disorder is not so clear in cases of tardive dyskinesia, especially when the patient is not psychotic and he or she receives dopamine blockers for other circumstances. In such instances, the diagnosis is more troublesome and a careful search for drug intake should be done.

In this chapter, the main causes of drug-induced choreas are analyzed as well as their possible therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Toole O, Lennon VA, Ahlskog JE, Matsumoto JY, Pittock SJ, Bower J, et al. Autoimmune chorea in adults. Neurology. 2013;80(12):1133–44.

    PubMed Central  PubMed  Google Scholar 

  2. AhnE S, Scott RM, Robertson Jr RL, Smith ER. Chorea in the clinical presentation of moyamoya disease: results of surgical revascularization and a proposed clinicopathological correlation. J Neurosurg Pediatr. 2013;11(3):313–9.

    Google Scholar 

  3. Morrison PJ. Prevalence estimates of Huntington disease in Caucasian populations are gross underestimates. Mov Disord. 2012;27(13):1707–8.

    PubMed  Google Scholar 

  4. Piccolo I, Sterzi R, Thiella G, Minazzi MS, Caraceni T. Sporadic choreas: analysis of a general hospital series. Eur Neurol. 1999;41(3):143–9.

    CAS  PubMed  Google Scholar 

  5. Stork CM, Cantor R. Pemoline induced acute choreoathetosis: case report and review of the literature. J Toxicol Clin Toxicol. 1997;35(1):105–8.

    CAS  PubMed  Google Scholar 

  6. Kamath S, Bajaj N. Crack dancing in the United Kingdom: apropos a video case presentation. Mov Disord. 2007;22(8):1190–1.

    PubMed  Google Scholar 

  7. Rupniak NM, Jenner P, Marsden CD. Acute dystonia induced by neuroleptic drugs. Psychopharmacology (Berl). 1986;88(4):403–19.

    CAS  Google Scholar 

  8. Piccolo I, Thiella G, Sterzi R, Colombo N, Defanti CA. Chorea as a symptom of neuroborreliosis: a case study. Ital J Neurol Sci. 1998;19(4):235–9.

    CAS  PubMed  Google Scholar 

  9. Greenbaum L, Goldwurm S, Zozulinsky P, Lifschytz T, Cohen OS, Yahalom G, et al. Do tardive dyskinesia and L-dopa induced dyskinesia share common genetic risk factors? An exploratory study. J Mol Neurosci. 2013;51(2):380–8.

    CAS  PubMed  Google Scholar 

  10. Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet. 1977;1(8007):345–9.

    CAS  PubMed  Google Scholar 

  11. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):577–88.

    CAS  PubMed  Google Scholar 

  12. Kostic V, Przedborski S, Flaster E, Sternic N. Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology. 1991;41.2(Pt 1):202–5.

    Google Scholar 

  13. Tambasco N, Simoni S, Marsili E, Sacchini E, Murasecco D, Cardaioli G, et al. Clinical aspects and management of levodopa-induced dyskinesia. Parkinsons Dis. 2012;2012:745947.

    PubMed Central  PubMed  Google Scholar 

  14. Lyons KE, Hubble JP, Tröster AI, Pahwa R, Koller WC. Gender differences in Parkinson’s disease. Clin Neuropharmacol. 1998;21(2):118–21.

    CAS  PubMed  Google Scholar 

  15. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol. 2005;62(4):601–5.

    PubMed  Google Scholar 

  16. Cervantes-Arriaga A, Rodríguez-Violante M, Salmerón-Mercado M, Calleja-Castillo J, Corona T, Yescas P, et al. Incidence and determinants of levodopa-induced dyskinesia in a retrospective cohort of Mexican patients with Parkinson’s disease. Rev Invest Clin. 2012;64(3):220–6.

    PubMed  Google Scholar 

  17. Gilgun-Sherki Y, Djaldetti R, Melamed E, Offen D. Polymorphism in candidate genes: implications for the risk and treatment of idiopathic Parkinson’s disease. Pharmacogenomics J. 2004;4(5):291–306.

    CAS  PubMed  Google Scholar 

  18. Kaiser R, Hofer A, Grapengiesser A, Gasser T, Kupsch A, Roots I, et al. L -dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology. 2003;60(11):1750–5.

    CAS  PubMed  Google Scholar 

  19. Stocchi F, Vacca L, Ruggieri S, Olanow CW. Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol. 2005;62(6):905–10.

    PubMed  Google Scholar 

  20. Block G, Liss C, Reines S, Irr J, Nibbelink D. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease. A multicenter 5-year study. The CR First Study Group. Eur Neurol. 1997;37(1):23–7.

    CAS  PubMed  Google Scholar 

  21. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68(1):18–27.

    CAS  PubMed  Google Scholar 

  22. Boraud T, Bezard E, Bioulac B, Gross C. High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett. 1996;215(1):17–20.

    CAS  PubMed  Google Scholar 

  23. Boraud T, Bezard E, Guehl D, Bioulac B, Gross C. Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res. 1998;787(1):157–60.

    CAS  PubMed  Google Scholar 

  24. Boraud T, Bezard E, Bioulac B, Gross CE. Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain. 2001;124(Pt 3):546–57.

    CAS  PubMed  Google Scholar 

  25. Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine : an evidence-based review of its use in Parkinson’s disease. Drugs Aging. 2004;21(11):687–709.

    CAS  PubMed  Google Scholar 

  26. Poewe W, Wenning GK. Apomorphine: an underutilized therapy for Parkinson’s disease. Mov Disord. 2000;15(5):789–94.

    CAS  PubMed  Google Scholar 

  27. Meppelink AM, Nyman R, van Laar T, Drent M, Prins T, Leenders KL. Transcutaneous port for continuous duodenal levodopa/carbidopa administration in Parkinson’s disease. Mov Disord. 2011;26(2):331–4.

    PubMed  Google Scholar 

  28. Stern MB, Follett KA, Weaver FM. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes; turning tables: should GPi become the preferred DBS target for Parkinson disease? Author response. Neurology. 2013;80(2):225.

    PubMed  Google Scholar 

  29. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361(13):1268–78.

    CAS  PubMed  Google Scholar 

  30. Hauser RA, Lew MF, Hurtig HI, Ondo WG, Wojcieszek J, Fitzer-Attas CJ, et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord. 2009;24(4):564–73.

    PubMed  Google Scholar 

  31. Linazasoro G. Rasagiline in Parkinson’s disease. Neurologia. 2008;23(4):238–45.

    CAS  PubMed  Google Scholar 

  32. Lohle M, Reichmann H. Controversies in neurology: why monoamine oxidase B inhibitors could be a good choice for the initial treatment of Parkinson’s disease. BMC Neurol. 2011;11:112.

    PubMed Central  PubMed  Google Scholar 

  33. Koller WC. Initiating treatment of Parkinson’s disease. Neurology. 1992;42.1 Suppl 1:33–8.

    Google Scholar 

  34. Lees A. Alternatives to levodopa in the initial treatment of early Parkinson’s disease. Drugs Aging. 2005;22(9):731–40.

    CAS  PubMed  Google Scholar 

  35. Kulisevsky J, Lopez-Villegas D. Initial treatment of Parkinson’s disease. Rev Neurol. 1997;25 Suppl 2:S163–9.

    PubMed  Google Scholar 

  36. Hauser RA, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22(16):2409–17.

    PubMed  Google Scholar 

  37. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord. 2006;21(11):1844–50.

    PubMed  Google Scholar 

  38. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61(7):1044–53.

    PubMed  Google Scholar 

  39. Hickey P, Stacy M. Adenosine A2A antagonists in Parkinson’s disease: what’s next? Curr Neurol Neurosci Rep. 2012;12(4):376–85.

    CAS  PubMed  Google Scholar 

  40. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF. Adenosine, adenosine A 2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(6):406–13.

    CAS  PubMed  Google Scholar 

  41. Cieslak M, Komoszynski M, Wojtczak A. Adenosine A(2A) receptors in Parkinson’s disease treatment. Purinergic Signal. 2008;4(4):305–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain. 2004;127(Pt 5):1075–84.

    PubMed  Google Scholar 

  43. Chen W, Wang H, Wei H, Gu S, Wei H. Istradefylline, an adenosine A(2)A receptor antagonist, for patients with Parkinson’s Disease: a meta-analysis. J Neurol Sci. 2013;324(1-2):21–8.

    CAS  PubMed  Google Scholar 

  44. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–9.

    CAS  PubMed  Google Scholar 

  45. Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, et al. Higher free D-aspartate and N-methyl-D-aspartate levels prevent striatal depotentiation and anticipate L-DOPA-induced dyskinesia. Exp Neurol. 2011;232(2):240–50.

    CAS  PubMed  Google Scholar 

  46. Elahi B, Phielipp N, Chen R. N-Methyl-D-Aspartate antagonists in levodopa induced dyskinesia: a meta-analysis. Can J Neurol Sci. 2012;39(4):465–72.

    PubMed  Google Scholar 

  47. Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–63.

    PubMed  Google Scholar 

  48. Klitgaard H. Levetiracetam: the preclinical profile of a new class of antiepileptic drugs? Epilepsia. 2001;42 Suppl 4:13–8.

    PubMed  Google Scholar 

  49. Stathis P, Konitsiotis S, Tagaris G, Peterson D, VALID-PD Study Group. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(2):264–70.

    CAS  PubMed  Google Scholar 

  50. Goetz CG, Damier P, Hicking C, Laska E, Müller T, Olanow CW, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord. 2007;22(2):179–86.

    PubMed  Google Scholar 

  51. Wenning GK, Bösch S, Luginger E, Wagner M, Poewe W. Effects of long-term, continuous subcutaneous apomorphine infusions on motor complications in advanced Parkinson’s disease. Adv Neurol. 1999;80:545–8.

    CAS  PubMed  Google Scholar 

  52. Manson AJ, Turner K, Lees AJ. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: long-term follow-up study of 64 patients. Mov Disord. 2002;17(6):1235–41.

    PubMed  Google Scholar 

  53. Schuh LA, Bennett Jr JP. Suppression of dyskinesias in advanced Parkinson’s disease. I. Continuous intravenous levodopa shifts dose response for production of dyskinesias but not for relief of parkinsonism in patients with advanced Parkinson’s disease. Neurology. 1993;43(8):1545–50.

    CAS  PubMed  Google Scholar 

  54. Manson AJ, Hanagasi H, Turner K, Patsalos PN, Carey P, Ratnaraj N, et al. Intravenous apomorphine therapy in Parkinson’s disease: clinical and pharmacokinetic observations. Brain. 2001;124(Pt 2):331–40.

    CAS  PubMed  Google Scholar 

  55. Nyholm D. Duodopa(R) treatment for advanced Parkinson’s disease: a review of efficacy and safety. Parkinsonism Relat Disord. 2012;18(8):916–29.

    PubMed  Google Scholar 

  56. Nyholm D, Johansson A, Aquilonius SM, Hellquist E, Lennernäs H, Askmark H. Complexity of motor response to different doses of duodenal levodopa infusion in Parkinson disease. Clin Neuropharmacol. 2012;35(1):6–14.

    CAS  PubMed  Google Scholar 

  57. Nilsson D, Nyholm D, Aquilonius SM. Duodenal levodopa infusion in Parkinson’s disease–long-term experience. Acta Neurol Scand. 2001;104(6):343–8.

    CAS  PubMed  Google Scholar 

  58. Wright BA, Waters CH. Continuous dopaminergic delivery to minimize motor complications in Parkinson’s disease. Expert Rev Neurothe. 2013;13(6):719–29.

    CAS  Google Scholar 

  59. Jenner P, McCreary AC, Scheller DK. Continuous drug delivery in early- and late-stage Parkinson’s disease as a strategy for avoiding dyskinesia induction and expression. J Neural Transm. 2011;118(12):1691–702.

    CAS  PubMed  Google Scholar 

  60. Heckmann JM, Legg P, Sklar D, Fine J, Bryer A, Kies B. IV amantadine improves chorea in Huntington’s disease: an acute randomized, controlled study. Neurology. 2004;63(3):597–8.

    CAS  PubMed  Google Scholar 

  61. Lucetti C, Del Dotto P, Gambaccini G, Dell’ Agnello G, Bernardini S, Rossi G, et al. IV amantadine improves chorea in Huntington’s disease: an acute randomized, controlled study. Neurology. 2003;60(12):1995–7.

    CAS  PubMed  Google Scholar 

  62. Espay AJ, Vaughan JE, Shukla R, Gartner M, Sahay A, Revilla FJ, et al. Botulinum toxin type A for Levodopa-induced cervical dyskinesias in Parkinson’s disease: unfavorable risk-benefit ratio. Mov Disord. 2011;26(5):913–4.

    PubMed  Google Scholar 

  63. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.

    CAS  PubMed  Google Scholar 

  64. Okun MS, Vitek JL. Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Mov Disord. 2004;19(4):375–89.

    PubMed  Google Scholar 

  65. Kleiner-Fisman G, Lozano A, Moro E, Poon YY, Lang AE. Long-term effect of unilateral pallidotomy on levodopa-induced dyskinesia. Mov Disord. 2010;25(10):1496–8.

    PubMed  Google Scholar 

  66. Bhidayasiri R, Fahn S, Weiner WJ, Gronseth GS, Sullivan KL, Zesiewicz TA, et al. Evidence-based guideline: treatment of tardive syndromes: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;81(5):463–9.

    PubMed  Google Scholar 

  67. Micheli F, Pardal MF, Gatto M, Torres M, Paradiso G, Parera IC, et al. Flunarizine- and cinnarizine-induced extrapyramidal reactions. Neurology. 1987;37(5):881–4.

    CAS  PubMed  Google Scholar 

  68. Rao AS, Camilleri M. Review article: metoclopramide and tardive dyskinesia. Aliment Pharmacol Ther. 2010;31(1):11–9.

    CAS  PubMed  Google Scholar 

  69. Kenney C, Hunter C, Davidson A, Jankovic J. Metoclopramide, an increasingly recognized cause of tardive dyskinesia. J Clin Pharmacol. 2008;48(3):379–84.

    CAS  PubMed  Google Scholar 

  70. Girard P, Monette C, Normandeau L, Pampoulova T, Rompré PH, de Grandmont P, et al. Contribution of orodental status to the intensity of orofacial tardive dyskinesia: an interdisciplinary and video-based assessment. J Psychiatr Res. 2012;46(5):684–7.

    PubMed  Google Scholar 

  71. Tenback DE, van Harten PN. Epidemiology and risk factors for (tardive) dyskinesia. Int Rev Neurobiol. 2011;98:211–30.

    CAS  PubMed  Google Scholar 

  72. Woerner MG, Kane JM, Lieberman JA, Alvir J, Bergmann KJ, Borenstein M, et al. The prevalence of tardive dyskinesia. J Clin Psychopharmacol. 1991;11(1):34–42.

    CAS  PubMed  Google Scholar 

  73. Kulkarni SK, Naidu PS. Pathophysiology and drug therapy of tardive dyskinesia: current concepts and future perspectives. Drugs Today (Barc). 2003;39(1):19–49.

    CAS  Google Scholar 

  74. Fenton WS, Blyler CR, Wyatt RJ, McGlashan TH. Prevalence of spontaneous dyskinesia in schizophrenic and non-schizophrenic psychiatric patients. Br J Psychiatry. 1997;171:265–8.

    CAS  PubMed  Google Scholar 

  75. Al Hadithy AF, Ivanova SA, Pechlivanoglou P, Semke A, Fedorenko O, Kornetova E, et al. Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):475–81.

    PubMed  Google Scholar 

  76. Chouinard G, Annable L, Ross-Chouinard A, Mercier P. A 5-year prospective longitudinal study of tardive dyskinesia: factors predicting appearance of new cases. J Clin Psychopharmacol. 1988;8(4 Suppl):21S–6.

    CAS  PubMed  Google Scholar 

  77. Woerner MG, Correll CU, Alvir JM, Greenwald B, Delman H, Kane JM. Incidence of tardive dyskinesia with risperidone or olanzapine in the elderly: results from a 2-year, prospective study in antipsychotic-naive patients. Neuropsychopharmacology. 2011;36(8):1738–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Frascarelli M, Paolemili M, Gallo M, Parente F, Biondi M. Tardive dyskinesia: diagnosis, assessment and treatment. Riv Psichiatr. 2013;48(3):187–96.

    PubMed  Google Scholar 

  79. Tarsy D, Lungu C, Baldessarini RJ. Epidemiology of tardive dyskinesia before and during the era of modern antipsychotic drugs. Handb Clin Neurol. 2011;100:601–16.

    PubMed  Google Scholar 

  80. Carroll NB, Boehm KE, Strickland RT. Chorea and tardive dyskinesia in a patient taking risperidone. J Clin Psychiatry. 1999;60(7):485–7.

    CAS  PubMed  Google Scholar 

  81. Bhimanil MM, Khan MM, Khan MF, Waris MS. Respiratory dyskinesi--n under-recognized side-effect of neuroleptic medications. J Pak Med Assoc. 2011;61(9):930–2.

    Google Scholar 

  82. Orti-Pareja M, Jiménez-Jiménez FJ, Vázquez A, Catalán MJ, Zurdo M, Burguera JA, et al. Drug-induced tardive syndromes. Parkinsonism Relat Disord. 1999;5(1-2):59–65.

    CAS  PubMed  Google Scholar 

  83. Kumar H, Jog M. Missing Huntington’s disease for tardive dyskinesia: a preventable error. Can J Neurol Sci. 2011;38(5):762–4.

    PubMed  Google Scholar 

  84. Cummings JL, Wirshing WC. Recognition and differential diagnosis of tardive dyskinesia. Int J Psychiatry Med. 1989;19(2):133–44.

    CAS  PubMed  Google Scholar 

  85. Walters AS, McHale D, Sage JI, Hening WA, Bergen M. A blinded study of the suppressibility of involuntary movements in Huntington’s chorea, tardive dyskinesia, and L-dopa-induced chorea. Clin Neuropharmacol. 1990;13(3):236–40.

    CAS  PubMed  Google Scholar 

  86. Rossi Sebastiano D, Soliveri P, Panzica F, Moroni I, Gellera C, Gilioli I, et al. Cortical myoclonus in childhood and juvenile onset Huntington’s disease. Parkinsonism Relat Disord. 2012;18(6):794–7.

    PubMed  Google Scholar 

  87. Valle-Lopez P, Canas-Canas MT, Camara-Barrio S. Psychiatric symptoms in a woman with chorea-acanthocytosis. Actas Esp Psiquiatr. 2013;41(2):133–6.

    PubMed  Google Scholar 

  88. Delval A, Krystkowiak P. Locomotion disturbances in Huntington’s disease. Rev Neurol (Paris). 2010;166(2):213–20.

    CAS  Google Scholar 

  89. Baldessarini RJ, Tarsy D. Pathophysiologic basis of tardive dyskinesia. Adv Biochem Psychopharmacol. 1980;24:451–5.

    CAS  PubMed  Google Scholar 

  90. Meltzer HY. An overview of the mechanism of action of clozapine. J Clin Psychiatry. 1994;55(Suppl B):47–52.

    PubMed  Google Scholar 

  91. Pae CU. Additive effect between quinine oxidoreductase gene (NQO1: Pro187Ser) and manganese superoxide dismutase gene (MnSOD: Ala-9Val) polymorphisms on tardive dyskinesia in patients with schizophrenia. Psychiatry Res. 2008;161(3):336–8.

    CAS  PubMed  Google Scholar 

  92. Pae CU, Kim TS, Patkar AA, Kim JJ, Lee CU, Lee SJ, et al. Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism may not be associated with schizophrenia and tardive dyskinesia. Psychiatry Res. 2007;153(1):77–81.

    CAS  PubMed  Google Scholar 

  93. Pae CU, Yu HS, Kim JJ, Lee CU, Lee SJ, Jun TY, et al. Quinone oxidoreductase (NQO1) gene polymorphism (609C/T) may be associated with tardive dyskinesia, but not with the development of schizophrenia. Int J Neuropsychopharmacol. 2004;7(4):495–500.

    CAS  PubMed  Google Scholar 

  94. Steen VM, Løvlie R, MacEwan T, McCreadie RG. Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry. 1997;2(2):139–45.

    CAS  PubMed  Google Scholar 

  95. Rietschel M, Krauss H, Müller DJ, Schulze TG, Knapp M, Marwinski K, et al. Dopamine D3 receptor variant and tardive dyskinesia. Eur Arch Psychiatry Clin Neurosci. 2000;250(1):31–5.

    CAS  PubMed  Google Scholar 

  96. Kapitany T, Meszaros K, Lenzinger E, Schindler SD, Barnas C, Fuchs K, et al. Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia. Schizophr Res. 1998;32(2):101–6.

    CAS  PubMed  Google Scholar 

  97. Segman RH, Heresco-Levy U, Finkel B, Goltser T, Shalem R, Schlafman M, et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry. 2001;6(2):225–9.

    CAS  PubMed  Google Scholar 

  98. Segman RH, Heresco-Levy U, Finkel B, Inbar R, Neeman T, Schlafman M, et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl). 2000;152(4):408–13.

    CAS  Google Scholar 

  99. Xiang YT, Wang CY, Si TM, Lee EH, He YL, Ungvari GS, et al. Tardive dyskinesia in the treatment of schizophrenia: the findings of the Research on Asian Psychotropic Prescription Pattern (REAP) survey (2001–2009). Int J Clin Pharmacol Ther. 2011;49(6):382–7.

    PubMed  Google Scholar 

  100. Lee J, Jiang J, Sim K, Chong SA. The prevalence of tardive dyskinesia in Chinese Singaporean patients with schizophrenia: revisited. J Clin Psychopharmacol. 2010;30(3):333–5.

    CAS  PubMed  Google Scholar 

  101. van Os J, Walsh E, van Horn E, Tattan T, Bale R, Thompson SG. Tardive dyskinesia in psychosis: are women really more at risk? UK700 Group. Acta Psychiatr Scand. 1999;99(4):288–93.

    PubMed  Google Scholar 

  102. Yuen O, Caligiuri MP, Williams R, Dickson RA. Tardive dyskinesia and positive and negative symptoms of schizophrenia. A study using instrumental measures. Br J Psychiatry. 1996;168(6):702–8.

    CAS  PubMed  Google Scholar 

  103. van Harten PN, Hoek HW, Matroos GE, Koeter M, Kahn RS. Intermittent neuroleptic treatment and risk for tardive dyskinesia: Curacao Extrapyramidal Syndromes Study III. Am J Psychiatry. 1998;155(4):565–7.

    PubMed  Google Scholar 

  104. Jesic MP, Jesić A, Filipović JB, Zivanović O. Extrapyramidal syndromes caused by antipsychotics. Med Pregl. 2012;65(11-12):521–6.

    PubMed  Google Scholar 

  105. Shenoy RS, Sadler AG, Goldberg SC, Hamer RM, Ross B. Effects of a six-week drug holiday on symptom status, relapse, and tardive dyskinesia in chronic schizophrenics. J Clin Psychopharmacol. 1981;1(3):141–5.

    CAS  PubMed  Google Scholar 

  106. Marshall DL, Hazlet TK, Gardner JS, Blough DK. Neuroleptic drug exposure and incidence of tardive dyskinesia: a records-based case-control study. J Manag Care Pharm. 2002;8(4):259–65.

    PubMed  Google Scholar 

  107. Fahn S. Long-term treatment of tardive dyskinesia with presynaptically acting dopamine-depleting agents. Adv Neurol. 1983;37:267–76.

    CAS  PubMed  Google Scholar 

  108. Paleacu D, Giladi N, Moore O, Stern A, Honigman S, Badarny S. Tetrabenazine treatment in movement disorders. Clin Neuropharmacol. 2004;27(5):230–3.

    CAS  PubMed  Google Scholar 

  109. Tarsy D. Tardive dyskinesia. Curr Treat Options Neurol. 2000;2(3):205–14.

    PubMed  Google Scholar 

  110. Bonelli RM, Hofmann P. A systematic review of the treatment studies in Huntington’s disease since 1990. Expert Opin Pharmacother. 2007;8(2):141–53.

    CAS  PubMed  Google Scholar 

  111. Wu J, Tang T, Bezprozvanny I. Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington’s disease. Neurosci Lett. 2006;407(3):219–23.

    CAS  PubMed  Google Scholar 

  112. Qin ZH, Wang J, Gu ZL. Development of novel therapies for Huntington’s disease: hope and challenge. Acta Pharmacol Sin. 2005;26(2):129–42.

    CAS  PubMed  Google Scholar 

  113. Pappa S, Tsouli S, Apostolou G, Mavreas V, Konitsiotis S. Effects of amantadine on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol. 2010;33(6):271–5.

    CAS  PubMed  Google Scholar 

  114. Freudenreich O, McEvoy JP. Added amantadine may diminish tardive dyskinesia in patients requiring continued neuroleptics. J Clin Psychiatry. 1995;56(4):173.

    CAS  PubMed  Google Scholar 

  115. Cowen MA, Green M, Bertollo DN, Abbott K. A treatment for tardive dyskinesia and some other extrapyramidal symptoms. J Clin Psychopharmacol. 1997;17(3):190–3.

    CAS  PubMed  Google Scholar 

  116. Tarsy D, Kaufman D, Sethi KD, Rivner MH, Molho E, Factor S. An open-label study of botulinum toxin A for treatment of tardive dystonia. Clin Neuropharmacol. 1997;20(1):90–3.

    CAS  PubMed  Google Scholar 

  117. Nobuhara K, Matsuda S, Okugawa G, Tamagaki C, Kinoshita T. Successful electroconvulsive treatment of depression associated with a marked reduction in the symptoms of tardive dyskinesia. J ECT. 2004;20(4):262–3.

    PubMed  Google Scholar 

  118. Peng LY, Lee Y, Lin PY. Electroconvulsive therapy for a patient with persistent tardive dyskinesia: a case report and literature review. J ECT. 2013;29(3):e52–4.

    PubMed  Google Scholar 

  119. Mentzel CL, Tenback DE, Tijssen MA, Visser-Vandewalle VE, van Harten PN. Efficacy and safety of deep brain stimulation in patients with medication-induced tardive dyskinesia and/or dystonia: a systematic review. J Clin Psychiatry. 2012;73(11):1434–8.

    PubMed  Google Scholar 

  120. Spindler MA, Galifianakis NB, Wilkinson JR, Duda JE. Globus pallidus interna deep brain stimulation for tardive dyskinesia: case report and review of the literature. Parkinsonism Relat Disord. 2013;19(2):141–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico E. Micheli MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Micheli, F.E. (2014). Drug-Induced Chorea. In: Micheli, F., LeWitt, P. (eds) Chorea. Springer, London. https://doi.org/10.1007/978-1-4471-6455-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6455-5_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6454-8

  • Online ISBN: 978-1-4471-6455-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics