Skip to main content

Abstract

In this section, some classifications of porous thermal insulation materials are given and different techniques for porosity investigation are described. Special attention is focused on the standard contact porosimetry, which provides no destruction of the samples and gives a possibility to determine pores in a wide diapason of sizes. Owing to these advantages, the technique allows us to research evolution of porous structure at different stages of the product preparation and identify the synthesis phase, when functional properties of the material are transformed to diametrically opposite ones. Effect of porosity on such properties as thermal conductivity and compression strength is estimated, the appropriated correlations are represented. The information dealt to research of thermal conductivity is given, the heat transfer through porous media is considered. It is noted, that the main way to reduce thermal conductivity is to increase porosity of the material, the contribution of solid phase can be diminished by this manner. This principle is used for manufacture of most of thermal insulators such as widespread polymer and inorganic foams. They are characterized by extremely low thermal conductivity, the order of magnitude of which is 10−2 and 10−1 W m−1 K−1, respectively. Modern approaches to development of new thermal insulating materials and structures are considered. These approaches are based on a decrease in heat conductivity of gaseous phase. In order to minimize the fluid contribution, inert gases, which are characterized by lower conductivity in a comparison with air, can be encapsulated in closed pores. Other ways are degassing of thermal insulating materials and decrease of their pore sizes, simultaneously high porosity has to be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agham RD (2012) Int J Eng Innov Technol 2(6):97

    Google Scholar 

  2. Papadopoulos AM (2005) Energy Build 37(1):77

    Article  Google Scholar 

  3. Schwab H, Heinemann U, Wachtel J, Ebert HP, Fricke J (2005) J Therm Envelope Build Sci 28(4):327

    Google Scholar 

  4. Baetens R, Jelle BP, Thue JV, Tenpierik MJ, Grynning S, Uvslokk S, Gustavsen A (2010) Energy Build 42(2):147

    Article  Google Scholar 

  5. AbuBakr Bahaj S, James PAB, Jentsch MF (2008) Energy Build 40(5):720

    Google Scholar 

  6. Bobrov YuL, Ovcharenko EG, Shoikhet BM, Petukhova EYu (2003) Thermal isolating materials and constructions. UNFRA-M, Moscow (in Russian)

    Google Scholar 

  7. Narayanan N, Ramamurthy K (2000) Cem Concr Compos 22(5):321

    Article  Google Scholar 

  8. Awang H, Mydin MAO, Roslan AF (2012) Adv Appl Sci Res 3(5):3326

    Google Scholar 

  9. Dubinin MM, Plavnik GM (1968) Carbon 6(2):183

    Article  Google Scholar 

  10. Vaitkus S, Laukaitis A, Gnipas I, Kersulis V, Vejelis S (2006) Mater Sci (Medziagotura) 12(4):323

    Google Scholar 

  11. Gendron R (ed) (2005) Thermoplastic foam processing. Principles and development. CRC Press, Boca Raton

    Google Scholar 

  12. Talbor H, Lee T, Jeulin D, Hanton D, Hobbs LW (2000) J Microsc 200(3):251

    Article  Google Scholar 

  13. Saadatfar M, Arns CH, Knackstedt MA, Senden T (2005) Colloids Surf A 263(1–3):284

    Article  Google Scholar 

  14. Bakhtiyari S, Allahverdi A, Rais-Ghasemi M (2011) Asian J Civ Eng (Build Hous) 12(3):353

    Google Scholar 

  15. Yartsev DV, Lakhin AV, Vol’fkovich YuM, Manukhin AV, Bogachev EA, Timofeev AN, Sosenkin VE, Nikol’skaya NF (2010) Russ J Non-Ferrous Met 51(4):364

    Article  Google Scholar 

  16. Bagotzky VS, Volfkovich YuM, Kanevsky LS, Skundin AM, Broussely M,Chenebault P, Caillaud T (1995) Power sources 15. In: Attewel A, Keily T (eds) Crowborough: international power sources symposium committee p 359

    Google Scholar 

  17. Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York

    Google Scholar 

  18. Adkins CJ (1987) An introduction to thermal physics. Cambridge University Press, Cambridge

    Google Scholar 

  19. Bulent Y, Paki T (2007) Energy Build 39(9):1027

    Article  Google Scholar 

  20. Jannot Y, Degiovanni A, Payet G (2009) Int J Heat Mass Transf 52(3–4):1105

    Article  MATH  Google Scholar 

  21. Saito Y, Kanematsu K, Matsui T (2009) Mater Trans 50(11):2623

    Article  Google Scholar 

  22. Coquard R, Baillis D, Quenard D (2008) Intern. J Therm Sci 47(3):324

    Article  Google Scholar 

  23. Jeans J (1987) An introduction to the kinetic theory of gases. Cambridge University Press, Cambridge

    Google Scholar 

  24. Bouquerel M, Duforestel T, Baillis D, Rusaouen G (2012) Energy Build 54:320

    Article  Google Scholar 

  25. Streed ER, Cunningtont GR, Zierman CA (1966) Thermophysics and temperature control of spacecraft and entry vehicles. Academic Press, New York, p 735

    Google Scholar 

  26. Placido E, Arduinischuster M, Kuhn J (2005) J Infrared Phys Technol 46(3):219

    Article  Google Scholar 

  27. Fricke J, Hümmer E, Morper H-J, Scheuerpflug P (1989) J Phys Colloques 50(C4):87

    Google Scholar 

  28. Kamiuto K (1990) Int J Solar Energy 9(1):23

    Article  Google Scholar 

  29. Lee ST, Ramesh NS (eds) (2004) Polymeric foams. Mechanics and materials. CRC Press, Boca Raton

    Google Scholar 

  30. Caps R, Fricke H (2000) Int J Thermophys 21(2):445

    Article  Google Scholar 

  31. Fricke J, Lu X, Wang P, Buttner D, Heinemann U (1992) Int J Heat Mass Trans 35(9):2305

    Google Scholar 

  32. Hümmer E, Rettelbach T, Lu X, Fricke J (1993) Thermochim Acta 218:269

    Article  Google Scholar 

  33. Lienhard JH IV, Lienhard JH V (2012) A heat transfer textbook. Phlogiston Press, Cambridge

    Google Scholar 

  34. Groover MP (2002) Fundamentals of modern manufacturing. Wiley, USA

    Google Scholar 

  35. Kearsley EP, Wainwrigh PJ (2002) Cem Concr Res 32(2):233

    Article  Google Scholar 

  36. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  37. Mittal V (ed) (2014) Polymer nanocomposite foams. CRC Press, Boka Raton

    Google Scholar 

  38. Eaves D (ed) (2004) Handbook of polymer foams. Rapra Technology, Shawbury

    Google Scholar 

  39. Klempner D, Sendijarevic V (2004) Polimeric foams and foam technology. Carl Hanser, Munich

    Google Scholar 

  40. Shen J, Cao X, Lee LJ (2006) Polymer 47(18):6303

    Article  Google Scholar 

  41. Harikrishnan G, Singh SN, Kiesel E, Macosko CW (2010) Polymer 51(15):3349

    Article  Google Scholar 

  42. Kuranska M, Prociak A (2012) Compos Sci Technol 72(2):299

    Article  Google Scholar 

  43. Hewlett P (ed) (2004) Lee’s chemistry of cement and concrete. Elsevier, Oxford

    Google Scholar 

  44. Mounanga P, Gbongbon W, Poullain P, Turcry P (2008) Cem Concr Compos 30(9):806

    Article  Google Scholar 

  45. Struharova A, Rousekova I (2007) Slovak J Civ Eng 15(2):35

    Google Scholar 

  46. Just A, Middendorf B (2009) Mater Charact 60(7):741

    Article  Google Scholar 

  47. Jones MR, McCarthy A (2005) Mag Concr Res 57(1):21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Dzyazko, Y.S., Konstantinovsky, B.Y. (2014). Thermal Insulating Materials. In: Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6377-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6377-0_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6376-3

  • Online ISBN: 978-1-4471-6377-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics