Skip to main content

Perioperative Care of the Pediatric Neurosurgical Patient

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

The management of infants and children with conditions of the brain and spinal cord can be challenging, and optimal management requires a thorough understanding of the developmental stages, age related physiological changes, and the pathophysiological processes that occur with these conditions. Patients with neurological conditions often undergo neurosurgical procedures and encounter clinicians from a variety of specialties. The perioperative period, is therefore, an important therapeutic window and clinicians who manage these patients during this period can provide patients with the opportunity to achieve full neurological recovery before, during, and after neurosurgery. For the preoperative period, pediatricians and emergency physicians are able to diagnose urgent/emergent neurosurgical conditions, prepare patients neurosurgery and prevent clinical deterioration from neurological conditions until definitive therapy such as neurosurgery can be provided. During surgery, anesthesiologists aim to provide optimal brain physiological conditions and optimal anesthetic and hemodynamic care during complex neurosurgical procedures. During the postoperative period, intensivists are responsible for anticipating and preventing postoperative consequences, and for helping patients achieve full neurological recovery. This chapter provides information on the neurological issues that should be considered during the perioperative period in the care of children undergoing neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Antidiuretic hormone

ATLS:

Advanced Trauma Life Support

ATP:

Adenosine triphosphate

AVM:

Arteriovenous malformations

BBB:

Blood brain barrier

CBF:

Cerebral Blood Flow

CBFV:

Cerebral blood flow velocity\

cCAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CMR:

Cerebral metabolic rate

CMRglu:

Cerebral metabolic rate for glucose

CMRO2 :

Cerebral metabolic rate of oxygen

CNS:

Central Nervous System

CO2 :

Carbon dioxide

CO2R:

Reactivity to Carbon dioxide

CPP:

Cerebral perfusion pressure

CS:

Cortical stimulation

CSF:

Cerebro-spinal fluid

CSW:

Cerebral salt wasting

CT:

Computed tomography

CVR:

Cerebrovascular resistance

DI:

Diabetes insipidus

ECoG:

Electrocorticography

EEG:

Electroencephalogram

EMG:

Electromyography

ET-1:

Endothelin-1

GCS:

Glasgow Coma Scale

HR:

Hoffman reflex

ICP:

Intracranial Pressure

ICPm:

Intracranial Pressure monitoring

IHAST:

International Hypothermia in Aneurysm Surgery Trial \

IM:

Intramuscular

iTBI:

Involving Traumatic Brain Injury

IV:

Intravenous

LLA:

Lower Limit of Autoregulation

MAC:

Minimum alveolar concentration

MAP:

Mean Arterial Pressure

MEP:

Motor evoked potentials

MRI:

Magnetic resonance imaging

NIH:

National Institutes of Health

NIRS:

Near infrared spectroscopy

NO:

Nitric oxide

NOS:

Nitric oxide synthase

O2 :

Oxygen

PaCO2 :

Partial pressure of arterial carbon dioxide

PALS:

Pediatric Advanced Life Support

PaO2 :

Partial pressure of oxygen in arterial blood

PG:

Prostaglandin

PT:

Prothrombin Time

PTT:

Partial Thromboplastin Time

SBP:

Systolic blood pressure

SCI:

Spinal cord injury

SCIWORA:

Spinal cord injury without radiological abnormalities

SDR:

Selective dorsal rhizotomy

SjvO2 :

Jugular venous oxygen saturation

SSEP:

Somatosensory evoked potentials

TBI:

Traumatic Brain Injury

TCD:

Transcranial Doppler

TIVA:

Total intravenous anesthesia

VAE:

Venous air embolus (or emboli)

VBAS :

Basilar artery flow velocity

VMCA :

Middle cerebral artery flow velocity

References

  1. Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol. 1980;7:508.

    PubMed  CAS  Google Scholar 

  2. Arieff AI, Ayus JC, Fraser CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Madsen PL, Vorstrup S. Cerebral blood flow and metabolism during sleep. Cerebrovasc Brain Metab Rev. 1991;3(4):281–96.

    PubMed  CAS  Google Scholar 

  4. Lenzi P, Zoccoli G, Walker AM, Franzini CLenzi P, Zoccoli G, Walker AM, Franzini C. Cerebral circulation in REM sleep: is oxygen a main regulating factor? Sleep Res Online. 2000;3(2):77–85.

    PubMed  CAS  Google Scholar 

  5. Lam AM, Matta BF, Mayberg TS, Strebel S. Change in cerebral blood flow velocity with onset of EEG silence during inhalation anesthesia in humans: evidence of flow-metabolism coupling? J Cereb Blood Flow Metab. 1995;15(4):714–7.

    PubMed  CAS  Google Scholar 

  6. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36(7):1130–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Biagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M. Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging. 2007;25(4):696–702.

    PubMed  Google Scholar 

  9. Wintermark M, Lepori D, Cotting J, et al. Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics. 2004;113:1642.

    PubMed  Google Scholar 

  10. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22(4):487–97.

    PubMed  CAS  Google Scholar 

  11. Harper AM, Glass HI. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry. 1965;28(5):449–52.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Padayachee TS, Kirkham FJ, Lewis RR, Gillard J, Hutchinson MC, Gosling RG. Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: a method of assessing the Circle of Willis. Ultrasound Med Biol. 1986;12(1):5–14.

    PubMed  CAS  Google Scholar 

  13. Karsli C, Luginbuehl I, Farrar M, Bissonnette B. Cerebrovascular carbon dioxide reactivity in children anaesthetized with propofol. Paediatr Anaesth. 2003;13(1):26–31.

    PubMed  Google Scholar 

  14. Leon JE, Bissonnette B. Cerebrovascular responses to carbon dioxide in children anaesthetized with halothane and isoflurane. Can J Anaesth. 1991;38(7):817–25.

    PubMed  CAS  Google Scholar 

  15. Rowney DA, Fairgrieve R, Bissonnette B. Cerebrovascular carbon dioxide reactivity in children anaesthetized with sevoflurane. Br J Anaesth. 2002;88:357.

    PubMed  CAS  Google Scholar 

  16. Pryds O, Andersen GE, Friis-Hansen B. Cerebral blood flow reactivity in spontaneously breathing, preterm infants shortly after birth. Acta Paediatr Scand. 1990;79(4):391–6.

    PubMed  CAS  Google Scholar 

  17. Baenziger O, Moenkhoff M, Morales CG, Waldvogel K, Wolf M, Bucher H, Fanconi S. Impaired chemical coupling of cerebral blood flow is compatible with intact neurological outcome in neonates with perinatal risk factors. Biol Neonate. 1999;75(1):9–17.

    PubMed  CAS  Google Scholar 

  18. Ellingsen I, Hauge A, Nicolaysen G, Thoresen M, Walløe L. Changes in human cerebral blood flow due to step changes in PAO2 and PACO2. Acta Physiol Scand. 1987;129(2):157–63.

    PubMed  CAS  Google Scholar 

  19. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–91.

    PubMed  CAS  Google Scholar 

  20. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.

    PubMed  CAS  Google Scholar 

  21. Vavilala MS, Lee LA, Lam AM. The lower limit of cerebral autoregulation in children during sevoflurane anesthesia. J Neurosurg Anesthesiol. 2003;15:307.

    PubMed  Google Scholar 

  22. Brady KM, Mytar JO, Lee JK, Cameron DE, Vricella LA, Thompson WR, Hogue CW, Easley RB. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery. Stroke. 2010;41(9):1957–62.

    PubMed  Google Scholar 

  23. Pryds A, Tønnesen J, Pryds O, Knudsen GM, Greisen G. Cerebral pressure autoregulation and vasoreactivity in the newborn rat. Pediatr Res. 2005;57(2):294–8. Epub 2004 Dec 7.

    PubMed  Google Scholar 

  24. Boylan GB, Young K, Panerai RB, Rennie JM, Evans DH. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res. 2000;48(1):12–7.

    PubMed  CAS  Google Scholar 

  25. Vavilala MS, Newell DW, Junger E, et al. Dynamic cerebral autoregulation in healthy adolescents. Acta Anaesthesiol Scand. 2002;46:393.

    PubMed  CAS  Google Scholar 

  26. Vavilala MS, Tontisirin N, Udomphorn Y, et al. Hemispheric differences in cerebral autoregulation in children with moderate and severe traumatic brain injury. Neurocrit Care. 2008;9(1):45–54.

    PubMed  Google Scholar 

  27. Karsli C, Luginbuehl I, Bissonnette B. The cerebrovascular response to hypocapnia in children receiving propofol. Anesth Analg. 2004;99(4):1049–52.

    PubMed  CAS  Google Scholar 

  28. Karsli C, Luginbuehl I, Farrar M, Bissonnette B. Propofol decreases cerebral blood flow velocity in anesthetized children. Can J Anaesth. 2002;49(8):830–4.

    PubMed  Google Scholar 

  29. Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.

    PubMed  Google Scholar 

  30. Cremer OL. The propofol infusion syndrome: more puzzling evidence on a complex and poorly characterized disorder. Crit Care. 2009;13(6):1012.

    PubMed Central  PubMed  Google Scholar 

  31. Pierce Jr EC, Lambertsen CJ, Deutsch S, Chase PE, Linde HW, Dripps RD, Price HL. Cerebral circulation and metabolism during thiopental anesthesia and hyper-ventilation in man. J Clin Invest. 1962;41:1664–71.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology. 1974;41(3):231–6.

    PubMed  CAS  Google Scholar 

  33. Albrecht RF, Miletich DJ, Rosenberg R, Zahed B. Cerebral blood flow and metabolic changes from induction to onset of anesthesia with halothane or pentobarbital. Anesthesiology. 1977;47(3):252–6.

    PubMed  CAS  Google Scholar 

  34. Mann JD, Butler AB, Johnson RN, Bass NH. Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. J Neurosurg. 1979;50(3):343–8.

    PubMed  CAS  Google Scholar 

  35. Smith AL, Hoff JT, Nielsen SL, Larson CP. Barbiturate protection in acute focal cerebral ischemia. Stroke. 1974;5(1):1–7.

    PubMed  CAS  Google Scholar 

  36. Nehls DG, Todd MM, Spetzler RF, Drummond JC, Thompson RA, Johnson PC. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology. 1987;66(4):453–64.

    PubMed  CAS  Google Scholar 

  37. Smith AL, Marque JJ. Anesthetics and cerebral edema. Anesthesiology. 1976;45(1):64–72.

    PubMed  CAS  Google Scholar 

  38. Miller R, Tausk HC, Stark DC. Effect of innovar, fentanyl and droperidol on the cerebrospinal fluid pressure in neurosurgical patients. Can Anaesth Soc J. 1975;22(4):502–8.

    PubMed  CAS  Google Scholar 

  39. Misfeldt BB, Jörgensen PB, Spotoft H, Ronde F. The effects of droperidol and fentanyl on intracranial pressure and cerebral perfusion pressure in neurosurgical patients. Br J Anaesth. 1976;48(10):963–8.

    PubMed  CAS  Google Scholar 

  40. Jobes DR, Kennell EM, Bush GL, Mull TD, Lecky JH, Behar MG, Wollman H. Cerebral blood flow and metabolism during morphine–nitrous oxide anesthesia in man. Anesthesiology. 1977;47(1):16–8.

    PubMed  CAS  Google Scholar 

  41. Moss E, Powell D, Gibson RM, McDowall DG. Effects of fentanyl on intracranial pressure and cerebral perfusion pressure during hypocapnia. Br J Anaesth. 1978;50(8):779–84.

    PubMed  CAS  Google Scholar 

  42. Artru AA. Effects of halothane and fentanyl on the rate of CSF production in dogs. Anesth Analg. 1983;62(6):581–5.

    PubMed  CAS  Google Scholar 

  43. Artru AA. Isoflurane does not increase the rate of CSF production in the dog. Anesthesiology. 1984;60(3):193–7.

    PubMed  CAS  Google Scholar 

  44. Yaster M, Koehler RC, Traystman RJ. Effects of fentanyl on peripheral and cerebral hemodynamics in neonatal lambs. Anesthesiology. 1987;66(4):524–30.

    PubMed  CAS  Google Scholar 

  45. Herrick IA, Gelb AW, Manninen PH, Reichman H, Lownie S. Effects of fentanyl, sufentanil, and alfentanil on brain retractor pressure. Anesth Analg. 1991;72(3):359–63.

    PubMed  CAS  Google Scholar 

  46. Weinstabl C, Mayer N, Richling B, Czech T, Spiss CK. Effect of sufentanil on intracranial pressure in neurosurgical patients. Anaesthesia. 1991;46(10):837–40.

    PubMed  CAS  Google Scholar 

  47. Mayberg TS, Lam AM, Eng CC, Laohaprasit V, Winn HR. The effect of alfentanil on cerebral blood flow velocity and intracranial pressure during isoflurane-nitrous oxide anesthesia in humans. Anesthesiology. 1993;78(2):288–94.

    PubMed  CAS  Google Scholar 

  48. Sperry RJ, Bailey PL, Reichman MV, Peterson JC, Petersen PB, Pace NL. Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology. 1992;77(3):416–20.

    PubMed  CAS  Google Scholar 

  49. Weinstabl C, Mayer N, Spiss CK. Sufentanil decreases cerebral blood flow velocity in patients with elevated intracranial pressure. Eur J Anaesthesiol. 1992;9(6):481–4.

    PubMed  CAS  Google Scholar 

  50. Albanese J, Durbec O, Viviand X, Potie F, Alliez B, Martin C. Sufentanil increases intracranial pressure in patients with head trauma. Anesthesiology. 1993;79(3):493–7.

    PubMed  CAS  Google Scholar 

  51. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil II. Model application. Anesthesiology. 1997;86(1):24–33.

    PubMed  CAS  Google Scholar 

  52. Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth. 2003;90(2):132–41.

    PubMed  CAS  Google Scholar 

  53. Hoffman WE, Cunningham F, James MK, Baughman VL, Albrecht RF. Effects of remifentanil, a new short-acting opioid, on cerebral blood flow, brain electrical activity, and intracranial pressure in dogs anesthetized with isoflurane and nitrous oxide. Anesthesiology. 1993;79(1):107–13; discussion 26A.

    PubMed  CAS  Google Scholar 

  54. Lagace A, Karsli C, Luginbuehl I, Bissonnette B. The effect of remifentanil on cerebral blood flow velocity in children anesthetized with propofol. Paediatr Anaesth. 2004;14(10):861–5.

    PubMed  Google Scholar 

  55. Baker KZ, Ostapkovich N, Sisti MB, Warner DS, Young WL. Intact cerebral blood flow reactivity during remifentanil/nitrous oxide anesthesia. J Neurosurg Anesthesiol. 1997;9(2):134–40.

    PubMed  CAS  Google Scholar 

  56. Ostapkovich ND, Baker KZ, Fogarty-Mack P, Sisti MB, Young WL. Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2O and fentanyl/N2O anesthesia. Anesthesiology. 1998;89(2):358–63.

    PubMed  CAS  Google Scholar 

  57. Klimscha W, Ullrich R, Nasel C, Dietrich W, Illievich UM, Wildling E, Tschernko E, Weidekamm C, Adler L, Heikenwälder G, Horvath G, Sladen RN. High-dose remifentanil does not impair cerebrovascular carbon dioxide reactivity in healthy male volunteers. Anesthesiology. 2003;99(4):834–40.

    PubMed  CAS  Google Scholar 

  58. Engelhard K, Reeker W, Kochs E, Werner C. Effect of remifentanil on intracranial pressure and cerebral blood flow velocity in patients with head trauma. Acta Anaesthesiol Scand. 2004;48(4):396–9.

    PubMed  CAS  Google Scholar 

  59. Guy J, Hindman BJ, Baker KZ, Borel CO, Maktabi M, Ostapkovich N, Kirchner J, Todd MM, Fogarty-Mack P, Yancy V, Sokoll MD, McAllister A, Roland C, Young WL, Warner DS. Comparison of remifentanil and fentanyl in patients undergoing craniotomy for supratentorial space-occupying lesions. Anesthesiology. 1997;86(3):514–24.

    PubMed  CAS  Google Scholar 

  60. Gerlach K, Uhlig T, Hppe M, Khirt T, Saager L, Schmucker P. Postoperative analgesia after preincisional administration of remifentanil. Minerva Anestesiol. 2003;69(6):563–9, 569–73.

    PubMed  CAS  Google Scholar 

  61. Cafiero T, Di Minno RM, Sivolella G, Di Iorio C. Immediate postoperative pain management in patients undergoing major abdominal surgery after remifentanil-based anesthesia: sufentanil vs tramadol. Minerva Anestesiol. 2004;70(9):661–9.

    PubMed  CAS  Google Scholar 

  62. Renou AM, Vernhiet J, Macrez P, Constant P, Billerey J, Khadaroo MY, Caillé JM. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50(10):1047–51.

    PubMed  CAS  Google Scholar 

  63. Moss E, Powell D, Gibson RM, McDowall DG. Effect of etomidate on intracranial pressure and cerebral perfusion pressure. Br J Anaesth. 1979;51(4):347–52.

    PubMed  CAS  Google Scholar 

  64. Laughlin TP, Newberg LA. Prolonged myoclonus after etomidate anesthesia. Anesth Analg. 1985;64(1):80–2.

    PubMed  CAS  Google Scholar 

  65. Sakabe T, Maekawa T, Ishikawa T, Takeshita H. The effects of lidocaine on canine cerebral metabolism and circulation related to the electroencephalogram. Anesthesiology. 1974;40(5):433–41.

    PubMed  CAS  Google Scholar 

  66. Donegan MF, Bedford RF. Intravenously administered lidocaine prevents intracranial hypertension during endotracheal suctioning. Anesthesiology. 1980;52(6):516–8.

    PubMed  CAS  Google Scholar 

  67. Cotev S, Shalit MN. Effects on diazepam on cerebral blood flow and oxygen uptake after head injury. Anesthesiology. 1975;43(1):117–22.

    PubMed  CAS  Google Scholar 

  68. Rockoff MA, Naughton KV, Shapiro HM, Ingvar M, Ray KF, Gagnon RL, Marshall LF. Cerebral circulatory and metabolic responses to intravenously administered lorazepam. Anesthesiology. 1980;53(3):215–8.

    PubMed  CAS  Google Scholar 

  69. Forster A, Juge O, Morel D. Effects of midazolam on cerebral blood flow in human volunteers. Anesthesiology. 1982;56(6):453–5.

    PubMed  CAS  Google Scholar 

  70. Nugent M, Artru AA, Michenfelder JD. Cerebral metabolic, vascular and protective effects of midazolam maleate: comparison to diazepam. Anesthesiology. 1982;56(3):172–6.

    PubMed  CAS  Google Scholar 

  71. Nakahashi K, Yomosa H, Matsuzawa N, Yamagishi N, Ueda Y, Yan S, Hiraki N. Effect on cerebral blood flow of midazolam during modified neurolept-anesthesia. Masui. 1991;40(12):1787–92.

    PubMed  CAS  Google Scholar 

  72. Tateishi A, Maekawa T, Takeshita H, Wakuta K. Clinical doses of midazolam and diazepam do not alter ICP Diazepam and intracranial pressure. Anesthesiology. 1981;54(4):335–7.

    PubMed  CAS  Google Scholar 

  73. Dawson B, Michenfelder JD, Theye RA. Effects of ketamine on canine cerebral blood flow and metabolism: modification by prior administration of thiopental. Anesth Analg. 1971;50(3):443–7.

    PubMed  CAS  Google Scholar 

  74. Takeshita H, Okuda Y, Sari A. The effects of ketamine on cerebral circulation and metabolism in man. Anesthesiology. 1972;36(1):69–75.

    PubMed  CAS  Google Scholar 

  75. Schwedler M, Miletich DJ, Albrecht RF. Cerebral blood flow and metabolism following ketamine administration. Can Anaesth Soc J. 1982;29(3):222–6.

    PubMed  CAS  Google Scholar 

  76. Hougaard K, Hansen A, Brodersen P. The effect of ketamine on regional cerebral blood flow in man. Anesthesiology. 1974;41(6):562–7.

    PubMed  CAS  Google Scholar 

  77. Gardner AE, Dannemiller FJ, Dean D. Intracranial cerebrospinal fluid pressure in man during ketamine anesthesia. Anesth Analg. 1972;51(5):741–5.

    PubMed  CAS  Google Scholar 

  78. Wyte SR, Shapiro HM, Turner P, Harris AB. Ketamine-induced intracranial hypertension. Anesthesiology. 1972;36(2):174–6.

    PubMed  CAS  Google Scholar 

  79. Lockhart CH, Jenkins JJ. Ketamine-induced apnea in patients with increased intracranial pressure. Anesthesiology. 1972;37(1):92–3.

    PubMed  CAS  Google Scholar 

  80. List WF, Crumrine RS, Cascorbi HF, Weiss MH. Increased cerebrospinal fluid pressure after ketamine. Anesthesiology. 1972;36(1):98–9.

    PubMed  CAS  Google Scholar 

  81. Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr. 2009;4(1):40–6.

    PubMed  Google Scholar 

  82. Aantaa R, Kallio A, Virtanen R. Dexmedetomidine, a novel [alpha]2-adrenergic agonist: a review of its pharmacodynamic characteristics. Drugs Future. 1993;18:49–56.

    Google Scholar 

  83. Frangoulidou E, Kuhlen R, Marenghi C. Sedative agents and respiratory depression: a unique profile of dexmedetomidine. In: Maze M, Morrison P, editors. Redefining sedation. London: The Royal Society of Medicine Press Ltd.; 1998. p. 40–50.

    Google Scholar 

  84. Precedex™ (dexmedetomidine) [package insert]. North Chicago: Abbott Laboratories.

    Google Scholar 

  85. Hassan E. Dexmedetomidine: a viewpoint by Dr Erkan Hassan. Drugs. 2000;59:269–70.

    Google Scholar 

  86. Shehabi Y, Ruettimann U, Adamson H, et al. Dexmedetomidine infusion for more than 24 h in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004;30:2188–96.

    PubMed  Google Scholar 

  87. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, Pasco LC, Patel PM. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008;108(2):225–32.

    PubMed  CAS  Google Scholar 

  88. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology. 2008;109(4):642–50.

    PubMed  CAS  Google Scholar 

  89. Drummond JC, Sturaitis MK. Brain tissue oxygenation during dexmedetomidine administration in surgical patients with neurovascular injuries. J Neurosurg Anesthesiol. 2010;22(4):336–41.

    PubMed  Google Scholar 

  90. Everett LL, van Rooyen IF, Warner MH, Shurtleff HA, Saneto RP, Ojemann JG. Use of dexmedetomidine in awake craniotomy in adolescents: report of two cases. Paediatr Anaesth. 2006;16(3):338–42.

    PubMed  Google Scholar 

  91. Mazze RI, Escue HM, Houston JB. Hyperkalemia and cardiovascular collapse following administration of succinylcholine to the traumatized patient. Anesthesiology. 1969;31(6):540–7.

    PubMed  CAS  Google Scholar 

  92. Thomas ET. Circulatory collapse following succinylcholine: report of a case. Anesth Analg. 1969;48(3):333–7.

    PubMed  CAS  Google Scholar 

  93. Smith RB, Grenvik A. Cardiac arrest following succinylcholine in patients with central nervous system injuries. Anesthesiology. 1970;33(5):558–60.

    PubMed  CAS  Google Scholar 

  94. Tong TK. Succinylcholine-induced hyperkalemia in near-drowning. Anesthesiology. 1987;66(5):720.

    PubMed  CAS  Google Scholar 

  95. Iwatsuki N, Kuroda N, Amaha K, Iwatsuki K. Succinylcholine-induced hyperkalemia in patients with ruptured cerebral aneurysms. Anesthesiology. 1980;53(1):64–7.

    PubMed  CAS  Google Scholar 

  96. Cowgill DB, Mostello LA, Shapiro HM. Encephalitis and a hyperkalemic response to succinycholine. Anesthesiology. 1974;40(4):409–11.

    PubMed  CAS  Google Scholar 

  97. Cooperman LH, Strobel Jr GE, Kennell EM. Massive hyperkalemia after administration of succinylcholine. Anesthesiology. 1970;32(2):161–4.

    PubMed  CAS  Google Scholar 

  98. Cooperman LH. Succinylcholine-induced hyperkalemia in neuromuscular disease. JAMA. 1970;213(11):1867–71.

    PubMed  CAS  Google Scholar 

  99. Tobey RE. Paraplegia, succinylcholine and cardiac arrest. Anesthesiology. 1970;32(4):359–64.

    PubMed  CAS  Google Scholar 

  100. Cottrell JE, Hartung J, Giffin JP, Shwiry B. Intracranial and hemodynamic changes after succinylcholine administration in cats. Anesth Analg. 1983;62(11):1006–9.

    PubMed  CAS  Google Scholar 

  101. Thiagarajah S, Sophie S, Lear E, Azar I, Frost EA. Effect of suxamethonium on the ICP of cats with and without thiopentone pretreatment. Br J Anaesth. 1988;60(2):157–60.

    PubMed  CAS  Google Scholar 

  102. Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology. 1986;65(2):165–9.

    PubMed  CAS  Google Scholar 

  103. Stirt JA, Grosslight KR, Bedford RF, Vollmer D. “Defasciculation” with metocurine prevents succinylcholine-induced increases in intracranial pressure. Anesthesiology. 1987;67(1):50–3.

    PubMed  CAS  Google Scholar 

  104. Lanier WL, Milde JH, Michenfelder JD. Cerebral stimulation following succinylcholine in dogs. Anesthesiology. 1986;64(5):551–9.

    PubMed  CAS  Google Scholar 

  105. Lanier WL, Milde JH, Michenfelder JD. The cerebral effects of pancuronium and atracurium in halothane-anesthetized dogs. Anesthesiology. 1985;63(6):589–97.

    PubMed  CAS  Google Scholar 

  106. Minton MD, Stirt JA, Bedford RF, Haworth C. Intracranial pressure after atracurium in neurosurgical patients. Anesth Analg. 1985;64(11):1113–6.

    PubMed  CAS  Google Scholar 

  107. Rosa G, Sanfilippo M, Orfei P, Di Giugno G, Vilardi V, Oppido PA, Gasparetto A. The effects of pipecuronium bromide on intracranial pressure and cerebral perfusion pressure. J Neurosurg Anesthesiol. 1991;3(4):253–7.

    PubMed  CAS  Google Scholar 

  108. Stirt JA, Maggio W, Haworth C, Minton MD, Bedford RF. Vecuronium: effect on intracranial pressure and hemodynamics in neurosurgical patients. Anesthesiology. 1987;67(4):570–3.

    PubMed  CAS  Google Scholar 

  109. Tarkkanen L, Laitinen L, Johansson G. Effects of d-tubocurarine on intracranial pressure and thalamic electrical impedance. Anesthesiology. 1974;40(3):247–51.

    PubMed  CAS  Google Scholar 

  110. Graham DH. Monitoring neuromuscular block may be unreliable in patients with upper-motor-neuron lesions. Anesthesiology. 1980;52(1):74–5.

    PubMed  CAS  Google Scholar 

  111. Moorthy SS, Hilgenberg JC. Resistance to non-depolarizing muscle relaxants in paretic upper extremities of patients with residual hemiplegia. Anesth Analg. 1980;59(8):624–7.

    PubMed  CAS  Google Scholar 

  112. Shayevitz JR, Matteo RS. Decreased sensitivity to metocurine in patients with upper motoneuron disease. Anesth Analg. 1985;64(8):767–72.

    PubMed  CAS  Google Scholar 

  113. Brown JC, Charlton JE, White DJ. A regional technique for the study of sensitivity to curare in human muscle. J Neurol Neurosurg Psychiatry. 1975;38(1):18–26.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Gandhi IC, Jindal MN, Patel VK. Mechanism of neuromuscular blockade with some antiepileptic drugs. Arzneimittelforschung. 1976;26(2):258–61.

    PubMed  CAS  Google Scholar 

  115. Spacek A, Nickl S, Neiger FX, Nigrovic V, Ullrich OW, Weindmayr-Goettel M, Schwall B, Taeger K, Kress HG. Augmentation of the rocuronium-induced neuromuscular block by the acutely administered phenytoin. Anesthesiology. 1999;90(6):1551–5.

    PubMed  CAS  Google Scholar 

  116. Roth S, Ebrahim ZY. Resistance to pancuronium in patients receiving carbamazepine. Anesthesiology. 1987;66(5):691–3.

    PubMed  CAS  Google Scholar 

  117. Ornstein E, Matteo RS, Young WL, Diaz J. Resistance to metocurine-induced neuromuscular blockade in patients receiving phenytoin. Anesthesiology. 1985;63(3):294–8.

    PubMed  CAS  Google Scholar 

  118. Ornstein E, Matteo RS, Schwartz AE, Silverberg PA, Young WL, Diaz J. The effect of phenytoin on the magnitude and duration of neuromuscular block following atracurium or vecuronium. Anesthesiology. 1987;67(2):191–6.

    PubMed  CAS  Google Scholar 

  119. Alloul K, Whalley DG, Shutway F, Ebrahim Z, Varin F. Pharmacokinetic origin of carbamazepine-induced resistance to vecuronium neuromuscular blockade in anesthetized patients. Anesthesiology. 1996;84(2):330–9.

    PubMed  CAS  Google Scholar 

  120. Hernández-Palazón J, Tortosa JA, Martínez-Lage JF, Pérez-Ayala M. Rocuronium-induced neuromuscular blockade is affected by chronic phenytoin therapy. J Neurosurg Anesthesiol. 2001;13(2):79–82.

    PubMed  Google Scholar 

  121. Soriano SG, Kaus SJ, Sullivan LJ, Martyn JA. Onset and duration of action of rocuronium in children receiving chronic anticonvulsant therapy. Paediatr Anaesth. 2000;10:133–6.

    PubMed  CAS  Google Scholar 

  122. Soriano SG, Martyn JA. Antiepileptic-induced resistance to neuromuscular blockers: mechanisms and clinical significance. Clin Pharmacokinet. 2004;43:71.

    PubMed  CAS  Google Scholar 

  123. Stoyka WW, Schutz HH. The cerebral response to sodium nitroprusside and trimethaphan controlled hypotension. Can Anesth Soc J. 1975;22:275.

    CAS  Google Scholar 

  124. Turner JM, Powell D, Gibson RM, McDowall DG. Intracranial pressure changes in neurosurgical patients during hypotension induced with sodium nitroprusside or trimetaphan. Br J Anaesth. 1977;49(5):419–25.

    PubMed  CAS  Google Scholar 

  125. Marsh ML, Aidinis SJ, Naughton KV, Marshall LF, Shapiro HM. The technique of nitroprusside administration modifies the intracranial pressure response. Anesthesiology. 1979;51(6):538–41.

    PubMed  CAS  Google Scholar 

  126. McDowall DG. Induced hypotension and brain ischaemia. Br J Anaesth. 1985;57(1):110–9.

    PubMed  CAS  Google Scholar 

  127. Griffin JP, Cottrell JE, Hartung J, Shwiry B. Intracranial pressure during nifedipine-induced hypotension. Anesth Analg. 1983;62(12):1078–80.

    PubMed  CAS  Google Scholar 

  128. Mazzoni P, Giffin JP, Cottrell JE, Hartung J, Capuano C, Epstein JM. Intracranial pressure during diltiazem-induced hypotension in anesthetized dogs. Anesth Analg. 1985;64(10):1001–4.

    PubMed  CAS  Google Scholar 

  129. Maekawa T, McDowall DG, Okuda Y. Oxygen tension on the brain surface during hypotension induced by haemorrhage, trimetaphan or sodium nitroprusside. Acta Neurol Scand Suppl. 1977;64:504–5.

    PubMed  CAS  Google Scholar 

  130. Michenfelder JD, Theye RA. Canine systemic and cerebral effects of hypotension induced by hemorrhage, trimethaphan, halothane, or nitroprusside. Anesthesiology. 1977;46(3):188–95.

    PubMed  CAS  Google Scholar 

  131. Scheingraber S, Rehm M, Sehmisch C, et al. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265.

    PubMed  CAS  Google Scholar 

  132. Bailey AG, McNaull PP, Jooste E, Tuchman JB. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg. 2010;110(2):375–90. Epub 2009 Dec 2.

    PubMed  Google Scholar 

  133. Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, Kai Lo S, Vallance S. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. SAFE Study Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group; Australian Red Cross Blood Service; George Institute for International Health. N Engl J Med. 2007;357(9):874–84.

    PubMed  CAS  Google Scholar 

  134. Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, Tremayne AB, Bernard SS, Ponsford J, HTS Study Investigators. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA. 2004;291(11):1350–7.

    PubMed  CAS  Google Scholar 

  135. Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. J Trauma. 2005;58:47–50.

    PubMed  CAS  Google Scholar 

  136. Van den BG, Schoonheydt K, Becx P, et al. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64:1348.

    Google Scholar 

  137. Van den BG, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359.

    Google Scholar 

  138. Branco RG, Tasker RC. Glycemic level in mechanically ventilated children with bronchiolitis. Pediatr Crit Care Med. 2007;8:546–50.

    PubMed  Google Scholar 

  139. Klein GW, Hojsak JM, Rapaport R. Hyperglycemia in the pediatric intensive care unit. Curr Opin Clin Nutr Metab Care. 2007;10:187–92.

    PubMed  CAS  Google Scholar 

  140. Van den BG, Wilmer A, Milants I, Wouters PJ, Bouckaert B, Bruyninckx F, Bouillon R, Schetz M. Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes. 2006;55:3151.

    Google Scholar 

  141. Sharma D, Jelacic J, Chennuri R, et al. Incidence and risk factors for perioperative hyperglycemia in children with traumatic brain injury. Anesth Analg. 2009;108:81.

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Coles JP, Minhas PS, Fryer TD, Smielewski P, Aigbirihio F, Donovan T, Downey SP, Williams G, Chatfield D, Matthews JC, Gupta AK, Carpenter TA, Clark JC, Pickard JD, Menon DK. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30:1950–9.

    PubMed  CAS  Google Scholar 

  143. Soriano SG, McManus ML, Sullivan LJ, et al. Cerebral blood flow velocity after mannitol infusion in children. Can J Anaesth. 1996;43:461.

    PubMed  CAS  Google Scholar 

  144. Khanna S, Davis D, Peterson B, Fisher B, Tung H, O’Quigley J, Deutsch R. Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med. 2000;28:1144–51.

    PubMed  CAS  Google Scholar 

  145. McManus ML, Soriano SG. Rebound swelling of astroglial cells exposed to hypertonic mannitol. Anesthesiology. 1998;88:1586–91.

    PubMed  CAS  Google Scholar 

  146. Thenuwara K, Todd MM, Brian Jr JE. Effect of mannitol and furosemide on plasma osmolality and brain water. Anesthesiology. 2002;96:416.

    PubMed  CAS  Google Scholar 

  147. Porzio P, Halberthal M, Bohn D, Halperin ML. Treatment of acute hyponatremia: ensuring the excretion of a predictable amount of electrolyte-free water. Crit Care Med. 2000;28:1905–10.

    PubMed  CAS  Google Scholar 

  148. Singh S, Bohn D, Carlotti AP, et al. Cerebral salt wasting: truths, fallacies, theories, and challenges. Crit Care Med. 2002;30:2575.

    PubMed  Google Scholar 

  149. Jimenez R, Casado-Flores J, Nieto M, Garcia-Teresa MA. Cerebral salt wasting syndrome in children with acute central nervous system injury. Pediatr Neurol. 2006;35:261–3.

    PubMed  Google Scholar 

  150. Celik US, Alabaz D, Yildizdas D, Alhan E, Kocabas E, Ulutan S. Cerebral salt wasting in tuberculous meningitis: treatment with fludrocortisone. Ann Trop Paediatr. 2005;25:297–302.

    PubMed  Google Scholar 

  151. Levine JP, Stelnicki E, Weiner HL, Bradley JP, McCarthy JG. Hyponatremia in the postoperative craniofacial pediatric patient population: a connection to cerebral salt wasting syndrome and management of the disorder. Plast Reconstr Surg. 2001;108:1501–8.

    PubMed  CAS  Google Scholar 

  152. Byeon JH, Yoo G. Cerebral salt wasting syndrome after calvarial remodeling in craniosynostosis. J Korean Med Sci. 2005;20:866–9.

    PubMed Central  PubMed  Google Scholar 

  153. Ganong CA, Kappy MS. Cerebral salt wasting in children. The need for recognition and treatment. Am J Dis Child. 1993;147(2):167–9 [Erratum in: Am J Dis Child 1993 Apr;147(4):369].

    PubMed  CAS  Google Scholar 

  154. Berger TM, Kistler W, Berendes E, Raufhake C, Walter M. Hyponatremia in a pediatric stroke patient: syndrome of inappropriate antidiuretic hormone secretion or cerebral salt wasting? Crit Care Med. 2002;30(4):792–5.

    PubMed  Google Scholar 

  155. Papadimitriou DT, Spiteri A, Pagnier A, Bayle M, Mischalowski MB, Bourdat G, Passagia JG, Plantaz D, Bost M, Garnier PE. Mineralocorticoid deficiency in post-operative cerebral salt wasting. J Pediatr Endocrinol Metab. 2007;20:1145–50.

    PubMed  Google Scholar 

  156. Wise-Faberowski L, Soriano SG, Ferrari L, et al. Lesson of the week: hyponatremic seizures and excessive intake of hypotonic fluids in young children. J Neurosurg Anesthesiol. 2004;16:14.

    PubMed  Google Scholar 

  157. Holzman RS. Clinical management of latex-allergic children. Anesth Analg. 1997;85(3):529–33.

    PubMed  CAS  Google Scholar 

  158. Kain ZN, Caldwell-Andrews AA, Krivutza DM, Weinberg ME, Wang SM, Gaal D. Trends in the practice of parental presence during induction of anesthesia and the use of preoperative sedative premedication in the United States, 1995–2002: results of a follow-up national survey. Anesth Analg. 2004;98(5):1252–9, table of contents.

    PubMed  Google Scholar 

  159. Cochrane DD, Adderley R, White CP, Norman M, Steinbok P. Apnea in patients with myelomeningocele. Pediatr Neurosurg. 1990;16:232–9.

    PubMed  Google Scholar 

  160. Cochrane DD, Gustavsson B, Poskitt KP, Steinbok P, Kestle JR. The surgical and natural morbidity of aggressive resection for posterior fossa tumors in childhood. Pediatr Neurosurg. 1994;20:19–29.

    PubMed  CAS  Google Scholar 

  161. Lee LA, Roth S, Posner KL, Cheney FW, Caplan RA, Newman NJ, Domino KB. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology. 2006;105(4):652–9.

    PubMed  Google Scholar 

  162. Grady MS, Bedford RF, Park TS. Changes in superior sagittal sinus pressure in children with head elevation, jugular venous compression, and PEEP. J Neurosurg. 1986;65(2):199–202.

    PubMed  CAS  Google Scholar 

  163. Todd MM, Warner DS, Sokoll MD, et al. A prospective, comparative trial of three anesthetics for elective supratentorial craniotomy. Anesthesiology. 1993;78:1005.

    PubMed  CAS  Google Scholar 

  164. Soriano SG, Sullivan LJ, Venkatakrishnan K, et al. Pharmacokinetics and pharmacodynamics of vecuronium in children receiving phenytoin or carbamazepine for chronic anticonvulsant therapy. Br J Anaesth. 2001;86:223.

    PubMed  CAS  Google Scholar 

  165. Breschan C, Platzer M, Jost R, Stettner H, Likar R. Size of internal jugular vs subclavian vein in small infants: an observational, anatomical evaluation with ultrasound. Br J Anaesth. 2010;105(2):179–84.

    PubMed  CAS  Google Scholar 

  166. Amantini A, Carrai R, Lori S, Peris A, Amadori A, Pinto F, Grippo A. Neurophysiological monitoring in adult and pediatric intensive care. Minerva Anestesiol. 2012;78(9):1067–75.

    PubMed  CAS  Google Scholar 

  167. Skippen P, Seear M, Poskitt K, Kestle J, Cochrane D, Annich G, Handel J. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25(8):1402–9.

    PubMed  CAS  Google Scholar 

  168. Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg. 1992;77:55–61.

    PubMed  CAS  Google Scholar 

  169. Matta BF, Lam AM, Mayberg TS, et al. A critique of the intraoperative use of jugular venous bulb catheters during neurosurgical procedures. Anesth Analg. 1994;79:745–50.

    PubMed  CAS  Google Scholar 

  170. Moss E, Dearden NM, Berridge JC. Effects of changes in mean arterial pressure on SjO2 during cerebral aneurysm surgery. Br J Anaesth. 1995;75(5):527–30.

    PubMed  CAS  Google Scholar 

  171. Friedmann DR, Eubig J, McGill M, Babb JS, Pramanik BK, Lalwani AK. Development of the jugular bulb: a radiologic study. Otol Neurotol. 2011;32(8):1389–95.

    PubMed  Google Scholar 

  172. Tsuji M, Saul JP, du Plessis A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106:625.

    PubMed  CAS  Google Scholar 

  173. Figaji AA, Zwane E, Graham Fieggen A, Argent AC, Le Roux PD, Peter JC. The effect of increased inspired fraction of oxygen on brain tissue oxygen tension in children with severe traumatic brain injury. Neurocrit Care. 2010;12(3):430–7.

    PubMed  Google Scholar 

  174. Bernier MO, Rehel JL, Brisse HJ, Wu-Zhou X, Caer-Lorho S, Jacob S, Chateil JF, Aubert B, Laurier D. Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol. 2012;85(1009):53–60.

    PubMed Central  PubMed  Google Scholar 

  175. Image Gently. www.imagegently.org. Accessed 11 Feb 2013.

  176. Ashwal S, Wycliffe ND, Holshouser BA. Advanced neuroimaging in children with nonaccidental trauma. Dev Neurosci. 2010;32(5–6):343–60.

    PubMed  CAS  Google Scholar 

  177. Waters KA, Forbes P, Morielli A, Hum C, O’Gorman AM, Vernet O, Davis GM, Tewfik TL, Ducharme FM, Brouillette RT. Sleep-disordered breathing in children with myelomeningocele. J Pediatr. 1998;132(4):672–81.

    PubMed  CAS  Google Scholar 

  178. Geiduschek JM, Haberkern CM, McLaughlin JF, Jacobson LE, Hays RM, Roberts TS. Pain management for children following selective dorsal rhizotomy. Can J Anaesth. 1997;41(6):492–6.

    Google Scholar 

  179. Ward SL, Nickerson BG, van der Hal A, Rodriguez AM, Jacobs RA, Keens TG. Absent hypoxic and hypercapneic arousal responses in children with myelomeningocele and apnea. Pediatrics. 1986;78(1):44–50.

    PubMed  CAS  Google Scholar 

  180. Pollack IF. Brain tumors in children. N Engl J Med. 1994;331(22):1500–7.

    PubMed  CAS  Google Scholar 

  181. Hatipoğlu MA, Prabhu S, Weinberg J, Shah K, Sawaya R. Surgical treatment of supplementary motor area lesions. Turk Neurosurg. 2009;19(3):306–7.

    PubMed  Google Scholar 

  182. Goumnerova LC, Frim DM. Treatment of hydrocephalus with third ventriculocisternostomy: outcome and CSF flow patterns. Pediatr Neurosurg. 1997;27(3):149–52.

    PubMed  CAS  Google Scholar 

  183. El-Dawlatly AA, Murshid WR, Elshimy A, Magboul MA, Samarkandi A, Takrouri MS. The incidence of bradycardia during endoscopic third ventriculostomy. Anesth Analg. 2000;91(5):1142–4.

    PubMed  CAS  Google Scholar 

  184. Eldredge EA, Rockoff MA, Medlock MD, Scott RM, Millis MB. Postoperative cerebral edema occurring in children with slit ventricles. Pediatrics. 1997;99(4):625–30.

    PubMed  CAS  Google Scholar 

  185. Inagaki T, Kyutoku S, Seno T, Kawaguchi T, Yamahara T, Oshige H, Yamanouchi Y, Kawamoto K. The intracranial pressure of the patients with mild form of craniosynostosis. Childs Nerv Syst. 2007;23(12):1455–9.

    PubMed  Google Scholar 

  186. Goobie SM, Meier-Haran P, Pereira L, McGowan FX, Prescilla R, Sharp L, Rogers G, Proctor MR, Meara J, Soriano SG, Zurakowski D, Sethna NF. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double blind placebo-controlled trial. Anesthesiology. 2011;114:862–71.

    PubMed  CAS  Google Scholar 

  187. Lecker I, Wang DS, Romaschin AD, Peterson M, Mazer CD, Orser BA. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J Clin Invest. 2012;122(12):4654–66.

    PubMed Central  PubMed  CAS  Google Scholar 

  188. Faberowski LW, Black S, Mickle JP. Incidence of venous air embolism during craniectomy for craniosynostosis repair. Anesthesiology. 2000;92(1):20–3.

    PubMed  CAS  Google Scholar 

  189. Jimenez DF, Barone CM, Cartwright CC, Baker L. Early management of craniosynostosis using endoscopic-assisted strip craniectomies and cranial orthotic molding therapy. Pediatrics. 2002;110(1 Pt 1):97–104.

    PubMed  Google Scholar 

  190. Jimenez DF, Barone CM. Endoscopic craniectomy for early surgical correction of sagittal craniosynostosis. J Neurosurg. 1998;88(1):77–81.

    PubMed  CAS  Google Scholar 

  191. Tobias JD, Johnson JO, Jimenez DF, et al. Venous air embolism during endoscopic strip craniectomy for repair of craniosynostosis in infants. Anesthesiology. 2001;95:340.

    PubMed  CAS  Google Scholar 

  192. Eldredge A, Soriano SG, Rockoff MA. Neuroanesthesia. Neurosurg Clin N Am. 1995;6(3):505–20.

    PubMed  CAS  Google Scholar 

  193. Wolf GK, McClain CD, Zurakowski D, et al. Total phenytoin concentrations do not accurately predict free phenytoin concentrations in critically ill children. Pediatr Crit Care Med. 2006;7:434.

    PubMed  Google Scholar 

  194. Burrows PE, Robertson RL. Neonatal central nervous system vascular disorders. Neurosurg Clin N Am. 1998;9:155–80.

    PubMed  CAS  Google Scholar 

  195. Morgan MK, Sekhon LH, Finfer S, Grinnell V. Delayed neurological deterioration following resection of arteriovenous malformations of the brain. J Neurosurg. 1999;90:695–701.

    PubMed  CAS  Google Scholar 

  196. Soriano SG, Sethna NF, Scott RM. Anesthetic management of children with moyamoya syndrome. Anesth Analg. 1993;77:1066.

    PubMed  CAS  Google Scholar 

  197. Kuwabara Y, Ichiya Y, Sasaki M, Yoshida T, Masuda K, Matsushima T, Fukui M. Response to hypercapnia in moyamoya disease. Cerebrovascular response to hypercapnia in pediatric and adult patients with moyamoya disease. Stroke. 1997;28:701–7.

    PubMed  CAS  Google Scholar 

  198. Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, Carson S, Chesnut RM, Ghajar J, Goldstein B, Grant GA, Kissoon N, Peterson K, Selden NR, Tasker RC, Tong KA, Vavilala MS, Wainwright MS, Warden CR, American Academy of Pediatrics-Section on Neurological Surgery, American Association of Neurological Surgeons/Congress of Neurological Surgeons, Child Neurology Society, European Society of Pediatric and Neonatal Intensive Care, Neurocritical Care Society, Pediatric Neurocritical Care Research Group, Society of Critical Care Medicine, Paediatric Intensive Care Society UK, Society for Neuroscience in Anesthesiology and Critical Care, World Federation of Pediatric Intensive and Critical Care Societies. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents-second edition. Pediatr Crit Care Med. 2012;13 Suppl 1:S1–82.

    PubMed  Google Scholar 

  199. White JRM, Farukhi Z, Bull C, et al. Predictors of outcome in severely head injured children. Crit Care Med. 2001;29:534.

    PubMed  CAS  Google Scholar 

  200. Mandera M, Larysz D, Wojtacha M. Changes in cerebral hemodynamics assessed by transcranial Doppler ultrasonography in children after head injury. Childs Nerv Syst. 2002;18(3–4):124–8. Epub 2002 Mar 20.

    PubMed  Google Scholar 

  201. Adelson PD, Clyde B, Kochanek PM, Wisniewski SR, Marion DW, Yonas H. Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg. 1997;26(4):200–7.

    PubMed  CAS  Google Scholar 

  202. Bode H, Wais U. Age dependence of flow velocities in basal cerebral arteries. Arch Dis Child. 1988;63(6):606–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  203. Vink R, Faden AI, McIntosh TK. Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy. J Neurotrauma. 1988;5:315.

    PubMed  CAS  Google Scholar 

  204. Ogawa A, Nakamura N, Sugita K, Sakurai Y, Kayama T, Wada T, Suzuki J. Regional cerebral blood flow in children-normal value and regional distribution of cerebral blood flow in childhood. No To Shinkei. 1987;39(2):113–8.

    PubMed  CAS  Google Scholar 

  205. Vavilala MS, Lee LA, Boddu K, et al. Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med. 2004;5:257.

    PubMed  Google Scholar 

  206. Bouma GJ, Muizelaar JP, Fatouros P. Pathogenesis of traumatic brain swelling: role of cerebral blood volume. Acta Neurochir Suppl. 1998;71:272–5.

    PubMed  CAS  Google Scholar 

  207. Vavilala MS, Muangman S, Waitayawinyu P, et al. Neurointensive care; impaired cerebral autoregulation in infants and young children early after inflicted traumatic brain injury: a preliminary report. J Neurotrauma. 2007;24(1):87–96.

    PubMed  Google Scholar 

  208. Vavilala MS, Muangman S, Tontisirin N, et al. Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Dev Neurosci. 2006;28:348.

    PubMed  CAS  Google Scholar 

  209. Bruce DA, Alavi A, Bilaniuk L, Dolinskas C, Obrist W, Uzzell B. Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema”. J Neurosurg. 1981;54(2):170–8.

    PubMed  CAS  Google Scholar 

  210. Aldrich EF, Eisenberg HM, Saydjari C, Luerssen TG, Foulkes MA, Jane JA, Marshall LF, Marmarou A, Young HF. Diffuse brain swelling in severely head-injured children. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1992;76(3):450–4.

    PubMed  CAS  Google Scholar 

  211. Adelson PD, Bratton SL, Carney NA, Chesnut RM, du Coudray HE, Goldstein B, Kochanek PM, Miller HC, Partington MD, Selden NR, Warden CR, Wright DW, American Association for Surgery of Trauma, Child Neurology Society, International Society for Pediatric Neurosurgery, International Trauma Anesthesia and Critical Care Society, Society of Critical Care Medicine, World Federation of Pediatric Intensive and Critical Care Societies. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Chapter 8. Cerebral perfusion pressure. Pediatr Crit Care Med. 2003;4(3 Suppl):S31.

    PubMed  Google Scholar 

  212. Chambers IR, Stobbart L, Jones PA, Kirkham FJ, Marsh M, Mendelow AD, Minns RA, Struthers S, Tasker RC. Age-related differences in intracranial pressure and cerebral perfusion pressure in the first 6 hours of monitoring after children’s head injury: association with outcome. Childs Nerv Syst. 2005;21(3):195–9.

    PubMed  CAS  Google Scholar 

  213. Chambers IR, Jones PA, Lo TY, Forsyth RJ, Fulton B, Andrews PJ, Mendelow AD, Minns RA. Critical thresholds of intracranial pressure and cerebral perfusion pressure related to age in paediatric head injury. J Neurol Neurosurg Psychiatry. 2006;77(2):234–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  214. Philip S, Chaiwat O, Udomphorn Y, Moore A, Zimmerman JJ, Armstead W, Vavilala MS. Variation in cerebral blood flow velocity with cerebral perfusion pressure >40 mm Hg in 42 children with severe traumatic brain injury. Crit Care Med. 2009;37(11):2973–8.

    PubMed Central  PubMed  Google Scholar 

  215. Di Gennaro JL, Mack CD, Malakouti A, Zimmerman JJ, Armstead W, Vavilala MS. Use and effect of vasopressors after pediatric traumatic brain injury. Dev Neurosci. 2010;32(5–6):420–30.

    PubMed Central  PubMed  Google Scholar 

  216. Sharples PM, Stuart AG, Matthews DS, et al. Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry. 1995;58:145.

    PubMed Central  PubMed  CAS  Google Scholar 

  217. Gambardella G, Zaccone C, Cardia E, Tomasello F. Intracranial pressure monitoring in children: comparison of external ventricular device with the fiberoptic system. Childs Nerv Syst. 1993;9:470–3.

    PubMed  CAS  Google Scholar 

  218. Hutchison JS, Ward RE, Lacroix J, Hebert PC, Barnes MA, Bohn DJ, Dirks PB, Doucette S, Fergusson D, Gottesman R, Joffe AR, Kirpalani HM, Meyer PG, Morris KP, Moher D, Singh RN, Skippen PW. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358:2447–56.

    PubMed  CAS  Google Scholar 

  219. Johnson JO, Jimenez DF, Barone CM. Blood loss after endoscopic strip craniectomy for craniosynostosis. J Neurosurg Anesthesiol. 2000;12:60.

    PubMed  CAS  Google Scholar 

  220. Rekate HL. Selecting patients for endoscopic third ventriculostomy. Neurosurg Clin N Am. 2004;15:39–49.

    PubMed  Google Scholar 

  221. El-Dawlatly AA, Murshid W, Alshimy A, Magboul MA, Samarkandi AH, Takrouri MS. Arrhythmias during neuroendoscopic procedures. J Neurosurg Anesthesiol. 2001;13:57–8.

    PubMed  CAS  Google Scholar 

  222. Davidyuk G, Soriano SG, Goumnerova L, Mizrahi-Arnaud A. Acute intraoperative neurogenic pulmonary edema during endoscopic ventriculoperitoneal shunt revision. Anesth Analg. 2010;110:594–5.

    PubMed  Google Scholar 

  223. Hansen MS, Brennum J, Moltke FB, Dahl JB. Pain treatment after craniotomy: where is the (procedure-specific) evidence? A qualitative systematic review. Eur J Anaesthesiol. 2011;28(12):821–9.

    PubMed  CAS  Google Scholar 

  224. Teo JH, Palmer GM, Davidson AJ. Post-craniotomy pain in a paediatric population. Anaesth Intensive Care. 2011;39(1):89–94.

    PubMed  CAS  Google Scholar 

  225. Brannen ML, Cameron KA, Adler M, Goodman D, Holl JL. Admission handoff communications: clinician’s shared understanding of patient severity of illness and problems. J Patient Saf. 2009;5(4):237–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica S. Vavilala MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Vavilala, M.S., Soriano, S.G. (2014). Perioperative Care of the Pediatric Neurosurgical Patient. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6359-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6359-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6358-9

  • Online ISBN: 978-1-4471-6359-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics