Skip to main content

Applied Cardiovascular Physiology in the PICU

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Normal cellular function is critically dependent upon oxygen, as evidenced by the relative complexity of the organ systems that have evolved to transport oxygen from the surrounding environment to the cells – namely, the cardiac, respiratory, peripheral vascular, and hematopoietic systems. Cells do not have the means to store oxygen, and are therefore dependent upon a continuous supply that closely matches the changing metabolic needs that are necessary for normal metabolism and cellular function. If oxygen supply is not aligned with these metabolic requirements, hypoxia will ensue, eventually resulting in cellular injury and/or death. In addition to the body’s compensatory mechanisms to augment oxygen delivery to the tissues, most of the management of critical illness is directed at restoring the normal balance between oxygen delivery and oxygen consumption. A thorough understanding of cardiovascular physiology, particularly as it applies to the management of the critically ill child in the Pediatric Intensive Care Unit (PICU) is therefore of utmost importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobrow BJ, Ewy GA. Ventilation during resuscitation efforts for out-of-hospital primary cardiac arrest. Curr Opin Crit Care. 2009;15:228–33.

    PubMed  Google Scholar 

  2. Hupfl M, Seliq HF, Nagele P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet. 2010;376:1552–7.

    PubMed Central  PubMed  Google Scholar 

  3. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003;89:1110–8.

    PubMed Central  PubMed  Google Scholar 

  4. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (2) Septation of the atriums and ventricles. Heart. 2003;89:949–58.

    PubMed Central  PubMed  Google Scholar 

  5. Moorman A, Webb S, Brown NA, Lamers W, Anderson RH. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–14.

    PubMed Central  PubMed  Google Scholar 

  6. Epstein JA. Franklin H. Epstein Lecture. Cardiac development and implications for heart disease. N Engl J Med. 2010;363:1638–47.

    CAS  PubMed  Google Scholar 

  7. Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943–8.

    CAS  PubMed  Google Scholar 

  8. Cook AC, Yates RW, Anderson RH. Normal and abnormal fetal cardiac anatomy. Prenat Diagn. 2004;24:1032–48.

    PubMed  Google Scholar 

  9. Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation. 2012;84:25–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheng A, Nguyen TC, Malinowski M, Daughters GT, Miller DC, Ingels Jr NB. Heterogeneity of left ventricular wall thickening mechanisms. Circulation. 2008;118:713–21.

    PubMed Central  PubMed  Google Scholar 

  11. Saleh S, Liakopoulos OJ, Buckberg GD. The septal motor of biventricular function. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S126–38.

    PubMed  Google Scholar 

  12. Williams L, Frenneaux M. Assessment of right ventricular function. Heart. 2008;94:404–5.

    PubMed  Google Scholar 

  13. Smiseth OA, Kingma I, Refsum H, Smith ER, Tyberg JV. The pericardial hypothesis: a mechanism of acute shifts of the left ventricular diastolic pressure-volume relation. Clin Physiol. 1985;5:403–15.

    CAS  PubMed  Google Scholar 

  14. Refsum H, Junemann M, Lipton MJ, Skioldebrand C, Carlsson E, Tyberg JV. Ventricular diastolic pressure-volume relations and the pericardium. Effects of changes in blood volume and pericardial effusion in dogs. Circulation. 1981;64:997–1004.

    CAS  PubMed  Google Scholar 

  15. Tyberg JV, Smith ER. Ventricular diastole and the role of the pericardium. Herz. 1990;15:354–61.

    CAS  PubMed  Google Scholar 

  16. Grant DA. Ventricular constraint in the fetus and newborn. Can J Cardiol. 1999;15:95–104.

    CAS  PubMed  Google Scholar 

  17. Belenkie I, Smith ER, Tyberg JV. Ventricular interaction: from bench to bedside. Ann Med. 2001;33:236–41.

    CAS  PubMed  Google Scholar 

  18. Moore TD, Frenneaux MP, Sas R, Atherton JJ, Morris-Thurgood JA, Smith ER, et al. Ventricular interaction and external constraint account for decreased stroke volume during volume loading in CHF. Am J Physiol Heart Circ Physiol. 2001;281:H2385–91.

    CAS  PubMed  Google Scholar 

  19. Belenkie I, Sas R, Mitchell J, Smith ER, Tyberg JV. Opening the pericardium during pulmonary artery constriction improves cardiac function. J Appl Physiol. 2004;96:917–22.

    PubMed  Google Scholar 

  20. Erol C, Seker M. The prevalence of coronary artery variations on coronary computed tomography angiography. Acta Radiol. 2012;53:278–84.

    PubMed  Google Scholar 

  21. Zamir M. Tree structure and branching characteristics of the right coronary artery in a right-dominant human heart. Can J Cardiol. 1996;12:593–9.

    CAS  PubMed  Google Scholar 

  22. Murphy PJ. The fetal circulation. Continuing education in anaesthesia. Crit Care Pain. 2005;5:107–12.

    Google Scholar 

  23. Clyman RI. Mechanisms regulating the ductus arteriosus. Biol Neonate. 2006;89:330–5.

    PubMed  Google Scholar 

  24. Bouayad A, Kajino H, Waleh N, Fouron JC, Andelfinger G, Varma DR, et al. Characterization of PGE2 receptors in fetal and newborn lamb ductus arteriosus. Am J Physiol Heart Circ Physiol. 2001;280:H2342–9.

    CAS  PubMed  Google Scholar 

  25. Sommer JR, Waugh RA. Ultrastructure of heart muscle. Environ Health Perspec. 1978;26:159–67.

    CAS  Google Scholar 

  26. Anversa P, Olivetti G, Loud AV. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia, and binucleation of myocytes. Circ Res. 1980;46:495–502.

    CAS  PubMed  Google Scholar 

  27. Nassar R, Reedy MC, Anderson PA. Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ Res. 1987;61:465–83.

    CAS  PubMed  Google Scholar 

  28. Sheridan DJ, Cullen MJ, Tynan MJ. Qualitative and quantitative observations on ultrastructural changes during postnatal development in the cat myocardium. J Mol Cell Cardiol. 1979;11:1173–81.

    CAS  PubMed  Google Scholar 

  29. Smolich JJ, Walker AM, Campbell GR, Adamson TM. Left and right ventricular myocardial morphometry in fetal, neonatal, and adult sheep. Am J Physiol. 1989;257:H1–9.

    CAS  PubMed  Google Scholar 

  30. Sordahl LA. Role of mitochondria in heart cell function. Tex Rep Biol Med. 1979;39:5–18.

    CAS  PubMed  Google Scholar 

  31. Kolwicz Jr SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113:603–16.

    CAS  PubMed  Google Scholar 

  32. Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol. 1991;261:H1698–705.

    CAS  PubMed  Google Scholar 

  33. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Ward Platt M, Deshpande S. Metabolic adaptation at birth. Semin Fetal Neonatal Med. 2005;10:341–50.

    PubMed  Google Scholar 

  35. Rosca MG, Hoppel CL. New aspects of impaired mitochondrial function in heart failure. J Bioenerg Biomembr. 2009;41:107–12.

    CAS  PubMed  Google Scholar 

  36. Teitel DF, Klautz R, Steendijk P, van der Velde ET, van Bel F, Baan J. The end-systolic pressure-volume relationship in the newborn lamb: effects of loading and inotropic interventions. Pediatr Res. 1991;29:473–82.

    CAS  PubMed  Google Scholar 

  37. Yin FC. Ventricular wall stress. Circ Res. 1981;49:829–42.

    CAS  PubMed  Google Scholar 

  38. Britman NA, Levine HJ. Contractile element work: a major determinant of myocardial oxygen consumption. J Clin Invest. 1964;43:1397–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level–risk factors, screening, and outcomes. Nat Rev Cardiol. 2011;8:673–85.

    PubMed  Google Scholar 

  40. Chowienczyk P, Shah A. Myocardial wall stress: from hypertension to heart tension. Hypertension. 2012;60:10–1.

    CAS  PubMed  Google Scholar 

  41. Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010;375:752–62.

    PubMed  Google Scholar 

  42. De Keulenaer GW, Brutsaert DL. Dilated cardiomyopathy: changing pathophysiological concepts and mechanisms of dysfunction. J Card Surg. 1999;14:64–74.

    PubMed  Google Scholar 

  43. Waggoner AD, Nouri S, Schaffer MS, Chen SC. Echocardiographic evaluation of left ventricular function, mass and wall stress in children with isolated ventricular septal defect. Tex Heart Inst J. 1985;12:163–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Yoshikawa M, Sato T. Left ventricular end-systolic wall stress to volume relationship before and after surgical closure of ventricular septal defect. Pediatr Cardiol. 1987;8:93–8.

    CAS  PubMed  Google Scholar 

  45. Krayenbuehl HP, Hess OM, Ritter M, Monrad ES, Hoppeler H. Left ventricular systolic function in aortic stenosis. Eur Heart J. 1988;9(Suppl E):19–23.

    PubMed  Google Scholar 

  46. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.

    CAS  PubMed  Google Scholar 

  47. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    CAS  PubMed  Google Scholar 

  48. Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rate ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res. 1991;68:662–73.

    CAS  PubMed  Google Scholar 

  49. Brillantes AM, Bezprozvannaya S, Marks AR. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling. Circ Res. 1994;75:503–10.

    CAS  PubMed  Google Scholar 

  50. Tibbits GF, Xu L, Sedarat F. Ontogeny of excitation-contraction coupling in the mammalian heart. Comp Biochem Physiol Part A Mol Integr Physiol. 2002;132:691–8.

    Google Scholar 

  51. Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG, Meija-Alvarez R. Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol. 2004;286:H971–8.

    CAS  PubMed  Google Scholar 

  52. Huang J, Xu L, Thomas M, Whitaker K, Hove-Madsen L, Tibbits GF. L-type Ca2+ channel function and expression in neonatal rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2006;290:H2267–76.

    CAS  PubMed  Google Scholar 

  53. Huang J, Hove-Madsen L, Tibbits GF. Ontogeny of the Ca2+−induced Ca2+ release in rabbit ventricular myocytes. Am J Physiol. 2008;294:C516–25.

    CAS  Google Scholar 

  54. Murdoch IA, Quershi SA, Huggon IC. Perioperative haemodynamic effects of an intravenous infusion of calcium chloride in children following cardiac surgery. Acta Paediatr. 1994;83:658–61.

    CAS  PubMed  Google Scholar 

  55. Fabiato A. Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells. Adv Exp Med Biol. 1992;311:245–62.

    CAS  PubMed  Google Scholar 

  56. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983;245:C1–14.

    CAS  PubMed  Google Scholar 

  57. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD. Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol. 1992;117:337–45.

    CAS  PubMed  Google Scholar 

  58. Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77:1528–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Song L, Alcalai R, Arad M, Wolf CM, Toka O, Conner DA, et al. Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia. J Clin Invest. 2007;117:1814–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4:566–77.

    CAS  PubMed  Google Scholar 

  61. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16:379–82.

    CAS  PubMed  Google Scholar 

  62. Kobayashi T, Solaro RJ. Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol. 2005;67:39–67.

    CAS  PubMed  Google Scholar 

  63. Benson Jr DW, Hughes SF, Hu N, Clark EB. Effect of heart rate increase on dorsal aortic flow before and after volume loading in the stage 24 chick embryo. Pediatr Res. 1989;26:438–41.

    PubMed  Google Scholar 

  64. Starling EH. The Law of the Heart. The Linacre Lecture. Given at Cambridge, 1915. London: Longmans, Green, & Co; 1918.

    Google Scholar 

  65. Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9:706–18.

    CAS  PubMed  Google Scholar 

  66. Ross Jr J, Braunwald E. Studies on Starling’s Law of the Heart. Ix. The effects of impeding venous return on performance of the normal and failing human left ventricle. Circulation. 1964;30:719–27.

    PubMed  Google Scholar 

  67. Rahko PS. Comparative efficacy of three indexes of left ventricular performance derived from pressure-volume loops in heart failure induced by tachypacing. J Am Coll Cardiol. 1994;23:209–18.

    CAS  PubMed  Google Scholar 

  68. Ichihashi K, Ewert P, Welmitz G, Lange P. Changes in ventricular and muscle volumes of neonates. Pediatr Int. 1999;41:8–12.

    CAS  PubMed  Google Scholar 

  69. Joyce JJ, Dickson PI, Qi N, Noble JE, Raj JU, Baylen BG. Normal right and left ventricular mass development during early infancy. Am J Cardiol. 2004;93:797–801.

    PubMed  Google Scholar 

  70. Marijianowski MM, van der Loos CM, Mohrschladt MF, Becker AE. The neonatal heart has a relatively high content of total collage and type I collagen, a condition that may explain the less compliant state. J Am Coll Cardiol. 1994;23:1204–8.

    CAS  PubMed  Google Scholar 

  71. Wei S, Chow LT, Shum IO, Qin L, Sanderson JE. Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction. J Card Fail. 1999;5:117–26.

    CAS  PubMed  Google Scholar 

  72. Marijianowski MM, Teeling P, Mann J, Becker AE. Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol. 1995;25:1263–72.

    CAS  PubMed  Google Scholar 

  73. Crepaz R, Pitscheider W, Radetti G, Gentili L. Age-related variation in left ventricular myocardial contractile state expressed by the stress velocity relation. Pediatr Cardiol. 1998;19:463–7.

    CAS  PubMed  Google Scholar 

  74. Luce WA, Hoffman TM, Bauer JA. Bench-to-bedside review: developmental influences on the mechanisms, treatment and outcomes of cardiovascular dysfunction in neonatal versus adult sepsis. Crit Care. 2007;11:228.

    PubMed Central  PubMed  Google Scholar 

  75. Rowland DG, Gutgesell HP. Non-invasive assessment of myocardial contractility, preload, and afterload in healthy newborn infants. Am J Cardiol. 1995;75:818–21.

    CAS  PubMed  Google Scholar 

  76. Romero TE, Friedman WF. Limited left ventricular response to volume overload in the neonatal period: a comparative study with the adult animal. Pediatr Res. 1979;13:910–5.

    CAS  PubMed  Google Scholar 

  77. Carcillo JA, Wheeler DS, Kooy NW, Shanley TP, editors. Shock. London: Springer; 2007.

    Google Scholar 

  78. Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189:609–15.

    CAS  PubMed  Google Scholar 

  79. Guyton AC, Jones CE, Coleman TG. Determination of cardiac output by equating venous return curves with cardiac output curves. Physiol Rev. 1955;35:123–9.

    CAS  PubMed  Google Scholar 

  80. Guyton AC. Regulation of cardiac output. Anesthesiology. 1968;29:314–26.

    CAS  PubMed  Google Scholar 

  81. Peters J, Mack GW, Lister G. The importance of the peripheral circulation in critical illness. Intensive Care Med. 2001;27:1446–58.

    CAS  PubMed  Google Scholar 

  82. Henderson WR, Griesdale DEG, Walley KR, Sheel AW. Clinical review: Guyton – the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14:243.

    PubMed Central  PubMed  Google Scholar 

  83. Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock – part I: physiology. Crit Care Med. 2013;41:255–62.

    PubMed  Google Scholar 

  84. Funk DJ, Jacobsohn E, Kumar A. Role of the venous return in critical illness and shock: part II: shock and mechanical ventilation. Crit Care Med. 2013;41:573–9.

    PubMed  Google Scholar 

  85. Hainsworth R. Vascular capacitance: its control and importance. Rev Physiol Biochem Pharmacol. 1986;105:101–73.

    CAS  PubMed  Google Scholar 

  86. Kumar A, Anel R, Bunnell E, Zanotti S, Habet K, Haery C, et al. Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusions in normal volunteers: a prospective interventional study. Crit Care. 2004;8:R128–36.

    PubMed Central  PubMed  Google Scholar 

  87. Kumar A, Anel R, Bunnell E, Habet K, Neumann A, Wolff D, et al. Effect of large volume infusion on left ventricular volumes, performance and contractility parameters in normal volunteers. Intensive Care Med. 2004;30:1361–9.

    PubMed  Google Scholar 

  88. Schroth M, Plank C, Meissner U, Eberle KP, Weyand M, Cesnjevar R, et al. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery. Pediatrics. 2006;118:e76–84.

    PubMed  Google Scholar 

  89. Bayliss WM, Starling EH. Observations on venous pressures and their relationships to capillary pressures. J Physiol (Lond). 1894;16:159–202.

    CAS  Google Scholar 

  90. Bressack MA, Raffin TA. Importance of venous return, venous resistance, and mean circulatory pressure in the physiology and management of shock. Chest. 1987;92:909–12.

    Google Scholar 

  91. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108:735–48.

    PubMed  Google Scholar 

  92. Shoukas AA, Sagawa K. Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ Res. 1973;33:22–33.

    CAS  PubMed  Google Scholar 

  93. Caldini P, Permutt S, Waddell JA, Riley RL. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34:606–23.

    CAS  PubMed  Google Scholar 

  94. Trippodo NC. Total circulatory capacity in the rat. Effects of epinephrine and vasopressin on compliance and unstressed volume. Circ Res. 1981;49:923–31.

    CAS  PubMed  Google Scholar 

  95. Greenway CV, Seaman KL, Innes IR. Norepinephrine on venous compliance and unstressed volume in cat liver. Am J Physiol. 1985;248:H468–76.

    CAS  PubMed  Google Scholar 

  96. Magder S, De Varennes B. Clinical death and measurement of stressed vascular volume. Crit Care Med. 1998;26:1061–4.

    CAS  PubMed  Google Scholar 

  97. Nouira S, Elatrous S, Dimassi S, Besbes L, Boukef R, Mohamed B, et al. Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med. 2005;33:2339–43.

    CAS  PubMed  Google Scholar 

  98. Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients: interpretation with venous return and cardiac function curves. Crit Care Med. 2013;41:143–50.

    CAS  PubMed  Google Scholar 

  99. Gutierrez G, Reines HD, Wulf-Gutierrez ME. Clinical review: hemorrhagic shock. Crit Care. 2004;8:373–81.

    PubMed Central  PubMed  Google Scholar 

  100. Krogh A. Regulation of the supply of blood to the right heart (with a description of a new circulation model). Scand Arch Physiol. 1912;27:227–48.

    Google Scholar 

  101. Mitzner W, Goldberg H. Effects of epinephrine on the resistive and compliant properties od the canine vasculature. J Appl Physiol. 1975;39:272–80.

    CAS  PubMed  Google Scholar 

  102. Gann DS, Lilly MP. The neuroendocrine response to multiple trauma. World J Surg. 1983;7:101–18.

    CAS  PubMed  Google Scholar 

  103. Kiserud T, Acharya G. The fetal circulation. Prenat Diagn. 2004;24(13):1049–59.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennett J. Sheridan MBBS, FRACP, FCICM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Gist, K.M., Spenceley, N., Sheridan, B.J., MacLaren, G., Wheeler, D.S. (2014). Applied Cardiovascular Physiology in the PICU. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6356-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6356-5_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6355-8

  • Online ISBN: 978-1-4471-6356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics