Skip to main content

Inside Molecular Mechanisms and Pharmacological Targets of Atrial Fibrillation

  • Chapter
  • First Online:
Atrial Fibrillation Therapy

Part of the book series: Current Cardiovascular Therapy ((CCT))

Abstract

Atrial fibrillation is the most common cardiac arrhythmia. The presence of the arrhythmia is associated with significant impairment of quality of life, morbidity, and mortality. Currently available antiarrhythmic strategies are often inefficient, with enough unpleasant side effects explaining the frequent lack of adherence to treatment. The limited success in the therapy of atrial fibrillation is highly due to the fact that the precise mechanisms underlying this arrhythmia are poorly understood. Recent studies assessing the molecular mechanisms linked to atrial fibrillation provided further insights into understanding ion channel function, regulation, and remodeling, and indicated potentially new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherf D. Studies on auricular tachycardia caused by aconitine administration. Proc Soc Exp Biol Med. 1947;4:233–9.

    Google Scholar 

  2. Haïssaguerre M, Marcus FI, Fischer B, et al. Radiofrequency catheter ablation in unusual mechanisms of atrial fibrillation: report of three cases. J Cardiovasc Electrophysiol. 1994;5:743–51.

    Article  PubMed  Google Scholar 

  3. Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    Article  PubMed  CAS  Google Scholar 

  4. Van Wagoner DR, Pond AL, Lamorgese M, et al. Atrial L-Type Ca2+ currents and human atrial fibrillation. Circ Res. 1999;85:428–36.

    Article  PubMed  Google Scholar 

  5. Ehrlich JR. Inward rectifier potassium currents as a target for atrial fibrillation therapy. J Cardiovasc Pharmacol. 2008;52(2):129–35.

    Article  PubMed  CAS  Google Scholar 

  6. Cha TJ, Ehrlich JR, Zhang L, et al. Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation. 2005;111(6):728–35.

    Article  PubMed  Google Scholar 

  7. Gaspo R, Bosch RF, Bou-Abboud E, et al. Tachycardia-induced changes in Na + current in a chronic dog model of atrial fibrillation. Circ Res. 1997;81:1045–52.

    Article  PubMed  CAS  Google Scholar 

  8. Bosch RF, Zeng X, Grammer JB, et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res. 1999;44:121–31.

    Article  PubMed  CAS  Google Scholar 

  9. Nyberg MT, Stoevring B, Behr ER, et al. The variation of the sarcolipin gene (SLN) in atrial fibrillation, long QT syndrome and sudden arrhythmic death syndrome. Clin Chim Acta. 2007;375:87–91.

    Article  PubMed  CAS  Google Scholar 

  10. Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    Article  PubMed  CAS  Google Scholar 

  11. Olson TM, Alekseev AE, Liu XK, et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15(14):2185–91.

    Article  PubMed  CAS  Google Scholar 

  12. Feng J, Wible B, Li G, et al. Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K + current in cultured adult human atrial myocytes. Circ Res. 1997;80:572–9.

    Article  PubMed  CAS  Google Scholar 

  13. Makiyama T, Akao M, Shizuta S, et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008;52(16):1326–34.

    Article  PubMed  CAS  Google Scholar 

  14. Olson TM, Alekseev AE, Moreau C, et al. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007;4(2):110–6.

    Article  PubMed  CAS  Google Scholar 

  15. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    Article  PubMed  Google Scholar 

  16. Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–4.

    Article  PubMed  CAS  Google Scholar 

  17. Tsai CT, Lai LP, Hwang JJ, et al. Molecular genetics of atrial fibrillation. J Am Coll Cardiol. 2008;52(4):241–50.

    Article  PubMed  CAS  Google Scholar 

  18. Wakili R, Voigt N, Kääb S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121(8):2955–68.

    Article  PubMed  CAS  Google Scholar 

  19. Yang Y, Xia M, Jin Q, et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75:899–905.

    Article  PubMed  CAS  Google Scholar 

  20. Fatini C, Sticchi E, Genuardi M, et al. Analysis of minK and eNOS genes as candidate loci for predisposition to non-valvular atrial fibrillation. Eur Heart J. 2006;27(14):1712–8.

    Article  PubMed  CAS  Google Scholar 

  21. Ma KJ, Li N, Teng SY, et al. Modulation of KCNQ1 current by atrial fibrillation-associated KCNE4 (145E/D) gene polymorphism. Chin Med J (Engl). 2007;120(2):150–4.

    CAS  Google Scholar 

  22. Ravn LS, Hofman-Bang J, Dixen U, et al. Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation. Am J Cardiol. 2005;96(3):405–7.

    Article  PubMed  CAS  Google Scholar 

  23. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293(4):447–54.

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe H, Darbar D, Kaiser DW, et al. Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2(3):268–75.

    Article  PubMed  CAS  Google Scholar 

  25. Bedi M, McNamara D, London B, et al. Genetic susceptibility to atrial fibrillation in patients with congestive heart failure. Heart Rhythm. 2006;3(7):808–12.

    Article  PubMed  Google Scholar 

  26. Hagendorff A, Schumacher B, Kirchhoff S, et al. Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999;99(11):1508–15.

    Article  PubMed  CAS  Google Scholar 

  27. Gollob MH, Jones DL, Krahn AD, et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;54(25):2677–88.

    Article  Google Scholar 

  28. Li DQ, Feng YB, Zhang HQ. The relationship between gap junctional remodeling and atrial fibrillation in patients with rheumatic heart disease. Zhonghua Yi Xue Za Zhi (abstract). 2004;84(5):384–6.

    Google Scholar 

  29. Tziakas DN, Chalikias GK, Stakos DA, et al. Effect of angiotensin-converting enzyme insertion/deletion genotype on collagen type I synthesis and degradation in patients with atrial fibrillation and arterial hypertension. Expert Opin Pharmacother. 2007;8(14):2225–34.

    Article  PubMed  CAS  Google Scholar 

  30. Cao FF, Chen XD, Wang QS, et al. Associations of the genetic polymorphisms in CYP11B2 gene with nonfamilial structural atrial fibrillation. Zhonghua Liu Xing Bing Xue Za Zhi (abstract). 2009;30(10):1069–72.

    CAS  Google Scholar 

  31. Wang QS, Li YG, Chen XD, et al. Angiotensinogen polymorphisms and acquired atrial fibrillation in Chinese. J Electrocardiol. 2010;43(4):373–7.

    Article  PubMed  Google Scholar 

  32. Gai X, Lan X, Luo Z, et al. Association of MMP-9 gene polymorphisms with atrial fibrillation in hypertensive heart disease patients. Clin Chim Acta. 2009;408(1–2):105–9.

    Article  PubMed  CAS  Google Scholar 

  33. Gai X, Zhang Z, Liang Y, et al. MMP-2 and TIMP-2 gene polymorphisms and susceptibility to atrial fibrillation in Chinese Han patients with hypertensive heart disease. Clin Chim Acta. 2010;411(9–10):719–24.

    Article  PubMed  CAS  Google Scholar 

  34. Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41:876–8.

    Article  PubMed  CAS  Google Scholar 

  36. Chinchilla A, Daimi H, Lozano-Velasco E, et al. Pitx2 insufficiency leads to atrial electrical and structural remodelling linked to arrhythmogenesis. Circ Cardiovasc Genet. 2011;4(3):269–79.

    Article  PubMed  CAS  Google Scholar 

  37. Tessari A, Pietrobon M, Notte A, et al. Myocardial Pitx2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs. Circ Res. 2008;102(7):813–22.

    Article  PubMed  CAS  Google Scholar 

  38. Wang J, Klysik E, Sood S, et al. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting leftsided pacemaker specification. Proc Natl Acad Sci U S A. 2010;107(21):9753–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kirchhof P, Khar PC, Kaese S, et al. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet. 2011;4(2):123–33.

    Article  PubMed  CAS  Google Scholar 

  40. Lozano-Velasco E, Chinchilla A, Martinez-Fernandez S, et al. Pitx2c modulates cardiac specific transcription factor networks in differentiating cardiomyocytes from murine embryonic stem cells. Cells Tissues Organs. 2011;194(5):349–62.

    Article  PubMed  CAS  Google Scholar 

  41. Hjalt TA, Amendt BA, Murray JC. PITX2 regulates procollagen lysyl hydroxylase (PLOD) gene expression: implications for the pathology of Rieger syndrome. J Cell Biol. 2001;152(3):545–52.

    Article  PubMed  CAS  Google Scholar 

  42. Barth AS, Merk S, Arnoldi E, et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res. 2005;96:1022–9.

    Article  PubMed  CAS  Google Scholar 

  43. Smith ML, Joglar JA, Wasmund SL, et al. Reflex control of sympathetic activity during simulated ventricular tachycardia in humans. Circulation. 1999;100:628–34.

    Article  PubMed  CAS  Google Scholar 

  44. Bouzegrhane F, Thibault G. Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res. 2002;53(2):304–12.

    Article  PubMed  CAS  Google Scholar 

  45. Dhein S, Polontchouk L, Salameh A, et al. Pharmacological modulation and differential regulation of the cardiac gap junction proteins connexin 43 and connexin 40. Biol Cell. 2002;94(7–8):409–22.

    Article  PubMed  CAS  Google Scholar 

  46. Shinagawa K, Shi YF, Tardif JC, et al. Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation. 2002;105:2672–8.

    Article  PubMed  Google Scholar 

  47. Anyukhovsky EP, Sosunov EA, Plotnikov A, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res. 2005;54:462–9.

    Article  Google Scholar 

  48. Kistler PM, Sanders P, Dodic M, et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J. 2006;27:3045–56.

    Article  PubMed  Google Scholar 

  49. Wang TJ, Parise H, Levy D, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292:2471–7.

    Article  PubMed  CAS  Google Scholar 

  50. Xiao HD, Fuchs S, Campbell DJ, et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol. 2004;165:1019–32.

    Article  PubMed  CAS  Google Scholar 

  51. Li D, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104:2608–14.

    Article  PubMed  CAS  Google Scholar 

  52. Okazaki H, Minamino T, Tsukamoto O, et al. Angiotensin II type 1 receptor blocker prevents atrial structural remodeling in rats with hypertension induced by chronic nitric oxide inhibition. Hypertens Res. 2006;29:277–84.

    Article  PubMed  CAS  Google Scholar 

  53. Anand K, Mooss AN, Hee TT, et al. Meta-analysis: inhibition of rennin-angiotensin system prevents new-onset atrial fibrillation. Am Heart J. 2006;152:217–22.

    Article  PubMed  CAS  Google Scholar 

  54. Fang WT, Li HJ, Zhang H, et al. The role of statin therapy in the prevention of atrial fibrillation: a meta-analysis of randomized controlled trials. Br J Clin Pharmacol. 2012;74(5):744–56.

    Article  PubMed  CAS  Google Scholar 

  55. Khawaja O, Gaziano JM, Djoussé L. A meta-analysis of omega-3 Fatty acids and incidence of atrial fibrillation. J Am Coll Nutr. 2012;31(1):4–13.

    Article  PubMed  CAS  Google Scholar 

  56. Kaneko N. New 1,4-benzothiazepine derivative, K201, demonstrates cardioprotective effects against sudden cardiac cell death and intracellular calcium blocking action. Drug Dev Res. 1994;33(4):429–38.

    Article  CAS  Google Scholar 

  57. Kohno M, Yano M, Kobayashi S, et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol. 2003;284(3):H1035–42.

    PubMed  CAS  Google Scholar 

  58. Hilliard FA, Steele DS, Laver D, et al. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol. 2010;48:293–301.

    Article  PubMed  CAS  Google Scholar 

  59. Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134–44.

    Article  PubMed  CAS  Google Scholar 

  60. Dobrev D, Nattel S. Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol. 2008;52:293–9.

    Article  PubMed  CAS  Google Scholar 

  61. Dobrev D. Cardiomyocyte Ca2+ overload in atrial tachycardia: is blockade of L-type Ca2+ channels a promising approach to prevent electrical remodeling and arrhythmogenesis? Naunyn Schmiedebergs Arch Pharmacol. 2007;376:227–30.

    Article  PubMed  CAS  Google Scholar 

  62. Blomström-Lundqvist C, Blomström P. Safety and efficacy of pharmacological cardioversion of atrial fibrillation using intravenous vernakalant, a new antiarrhythmic drug with atrial selectivity. Expert Opin Drug Saf. 2012;11(4):671–9.

    Article  PubMed  Google Scholar 

  63. Shiroshita-Takeshita A, Sakabe M, Haugan K, et al. Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation. 2007;115:310–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Scridon MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Scridon, A., Dobreanu, D. (2014). Inside Molecular Mechanisms and Pharmacological Targets of Atrial Fibrillation. In: Dan, GA., Bayés de Luna, A., Camm, J. (eds) Atrial Fibrillation Therapy. Current Cardiovascular Therapy. Springer, London. https://doi.org/10.1007/978-1-4471-5475-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5475-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5474-7

  • Online ISBN: 978-1-4471-5475-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics