Skip to main content

The Biology of Aseptic Loosening

  • Chapter
  • First Online:
Bone-Implant Interface in Orthopedic Surgery

Abstract

Total joint replacement is an effective surgical intervention for those patients with end stage of joint diseases. The major factor limiting the survival of joint implants is wear debris which is primarily generated from the bearing articular surface of the artificial joint. Aseptic loosening is a disabling condition affecting patients 10–20 years after joint replacement surgery, leading to the failure of the artificial joint. It appears as a subtle progression of bone tissue destruction (osteolysis, periprosthetic bone loss). It is a major challenge for orthopedic surgeons due to the fact that signs and symptoms may not be clinically apparent until the late stages of destruction and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Amer Y, Darwech I, Clohishy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9(S1):S6.

    PubMed  Google Scholar 

  2. Schmalzried TP, Akizuki KH, Fedenko AN, Mirra J. The role of access of joint fluid to bone in periarticular osteolysis. A report of four cases. J Bone Joint Surg Am. 1997;79A:447–52.

    Google Scholar 

  3. Robertsson O, Wingstrand H, Kesteris U, Jonsson K, Önnerfalt R. Intracapsular pressure and loosening of hip prostheses. Preoperative measurements in 18 hips. Acta Orthop Scand. 1997;68:231–4.

    PubMed  CAS  Google Scholar 

  4. Van der Vis H, Aspenberg P, De Kleine R, Tigchelaar W, Van Noorden CJ. Short periods of oscillating fluid pressure directed at a titanium-bone interface in rabbits lead to bone lysis. Acta Orthop Scand. 1998;69:5–10.

    PubMed  Google Scholar 

  5. Van der Vis HM, Aspenberg P, Marti RK, Tigchelaar W, Van Noorden CJ. Fluid pressure causes bone resorption in a rabbit model of prosthetic loosening. Clin Orthop. 1998;350:201–8.

    PubMed  Google Scholar 

  6. McEvoy A, Jeyam M, Ferrier G, Evans CE, Andrew JG. Synergistic effect of particles and cyclic pressure on cytokine production in human monocyte/macrophages: proposed role in periprosthetic osteolysis. Bone. 2002;30:171–7.

    PubMed  CAS  Google Scholar 

  7. Skoglund B, Larsson L, Aspenberg PA. Bone-resorptive effects of endotoxin-contaminated high-density polyethylene particles spontaneously eliminated in vivo. J Bone Joint Surg Br. 2002;84B:767–73.

    Google Scholar 

  8. Jevsevar DS, Abt E. The New AAOS-ADA clinical practice guideline on prevention of orthopaedic implant infection in patients undergoing dental procedures. J Am Acad Orthop Surg. 2013;21(3):195–7.

    PubMed  Google Scholar 

  9. Akisue T, Bauer TW, Farver CF, Mochida Y. The effect of particle wear debris on NFkappaB activation and pro- inflammatory cytokine release in differentiated THP-1 cells. J Biomed Mater Res. 2002;59(3):507–15.

    PubMed  CAS  Google Scholar 

  10. Hoenders CS, Harmsen MC, van Luyn MJ. The local inflammatory environment and microorganisms in “aseptic” loosening of hip prostheses. J Biomed Mater Res B. 2008;86(1):291–301.

    Google Scholar 

  11. Sundfeldt M, Widmark M, Johansson CB, Campbell P, Carlsson LV. Effect of submicron polyethylene particles on an osseointegrated implant: an experimental study with a rabbit patello-femoral prosthesis. Acta Orthop Scand. 2002;73(4):416–24.

    PubMed  Google Scholar 

  12. Bi Y, Seabold JM, Kaar SG, Ragab AA, Goldberg VM, Anderson JM, Greenfield EM. Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. J Bone Miner Res. 2001;16(11):2082–9.

    PubMed  CAS  Google Scholar 

  13. Espehaug B, Engesaeter LB, Vollset SE, Havelin LI, Langeland N. Antibiotic prophylaxis in total hip arthroplasty. J Bone Joint Surg Br. 1997;79B:590–5.

    Google Scholar 

  14. Matthews JB, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E. Comparison of the response of primary human peripheral blood mononuclear phagocytes from different donors to challenge with model polyethylene particles of known size and dose. Biomaterials. 2000;21(20):2033–44.

    PubMed  CAS  Google Scholar 

  15. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear A review of different theories. Acta Orthop Scand. 2006;77(2):177–97.

    Google Scholar 

  16. Wilkinson JM, Wilson AG, Stockley I, Scott IR, Macdonald DA, Hamer AJ, Duff GW, Eastell R. Variation in the TNF gene promoter and risk of osteolysis after total hip arthroplasty. J Bone Miner Res. 2003;18(11):1995–2001.

    PubMed  CAS  Google Scholar 

  17. Gordon A, Kiss-Toth E, Stockley I, Eastell R, Wilkinson JM. Polymorphisms in the interleukin-1 receptor antagonist and interleukin-6 genes affect risk of osteolysis in patients with total hip arthroplasty. Arthritis Rheum. 2008;58(10):3157–65.

    PubMed  CAS  Google Scholar 

  18. Malik MH, Jury F, Bayat A, Ollier WE, Kay PR. Genetic susceptibility to total hip arthroplasty failure: a preliminary study on the influence of matrix metalloproteinase 1, interleukin 6 polymorphisms and vitamin D receptor. Ann Rheum Dis. 2007;66(8):1116–20.

    PubMed  CAS  Google Scholar 

  19. Harris WH, Schiller AL, Scholler JM, Freiberg RA, Scott R. Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg Am. 1976;58A(5):612–8.

    Google Scholar 

  20. Jasty M, Maloney WJ, Bragdon CR, O’Connor DO, Haire T, Harris WH. The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg Br. 1991;73B(4):551–8.

    Google Scholar 

  21. Willert HG, Bertram H, Buchhorn GH. Osteolysis in allo arthroplasty of the hip. The role of bone cement fragmentation. Clin Orthop. 1990;258:108–21.

    PubMed  Google Scholar 

  22. Lennon AB, Prendergast PJ. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants. J Biomech Eng. 2001;123(6):623–8.

    PubMed  CAS  Google Scholar 

  23. Nuno N, Amabili M. Modelling debonded stem-cement interface for hip implants: effect of residual stresses. Clin Biomech. 2002;17(1):41–8.

    CAS  Google Scholar 

  24. Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty. 2002;17(5):649–61.

    PubMed  Google Scholar 

  25. Landy MM, Walker PS. Wear of ultra-high-molecular-weight polyethylene components of 90 retrieved knee prostheses. J Arthroplasty. 1988;3:S73–85.

    PubMed  Google Scholar 

  26. Lachiewicz PF, Geyer MR. The use of highly cross-linked polyethylene in total knee arthroplasty. JAAOS. 2011;19(3):143–51.

    Google Scholar 

  27. Kuzyk PR, Saccone M, Sprague S, Simunovic N, Bhandari M, Schemitsch EH. Cross-linked versus conventional polyethylene for total hip replacement: a meta-analysis of randomised controlled trials. J Bone Joint Surg Br. 2011;93B(5):593–600.

    Google Scholar 

  28. Bracco P, Oral E. Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin Orthop. 2011;469(8):2286–93.

    PubMed  Google Scholar 

  29. Sobieraj MC, Rimnac CM. Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater. 2009;2(5):433–43.

    PubMed  CAS  Google Scholar 

  30. Amstutz HC, Campbell P, McKellop H, Schmalzreid TP, Gillespie WJ, Howie D, Jacobs J, Medley J, Merritt K. Metal on metal total hip replacement workshop consensus document. Clin Orthop. 1996;329:S297–303.

    PubMed  Google Scholar 

  31. Doorn PF, Campbell PA, Worrall J, Benya PD, McKellop HA, Amstutz HC. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res. 1998;42(1):103–11.

    PubMed  CAS  Google Scholar 

  32. Billi F, Campbell P. Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. J Appl Biomater Biomech. 2010;8(1):1–6.

    PubMed  CAS  Google Scholar 

  33. Dorr LD, Wan Z, Longjohn DB, Dubois B, Murken R. Total hip arthroplasty with use of the Metasul metal-on-metal articulation. Four to seven-year results. J Bone Joint Surg Am. 2000;82A(6):789–98.

    Google Scholar 

  34. Huo MH, Salvati EA, Lieberman JR, Betts F, Bansal M. Metallic debris in femoral endosteolysis in failed cemented total hip arthroplasties. Clin Orthop. 1992;276:157–68.

    PubMed  Google Scholar 

  35. Blaine TA, Rosier RN, Puzas JE, Looney RJ, Reynolds PR, Reynolds SD, O’Keefe RJ. Increased levels of tumor necrosis factor-alpha and interleukin-6 protein and mes- senger RNA in human peripheral blood monocytes due to titanium particles. J Bone Joint Surg Am. 1996;78A(8):1181–92.

    Google Scholar 

  36. Wagner P, Olsson H, Lidgren L, Robertsson O, Ranstam J. Increased cancer risks among arthroplasty patients: 30 year follow-up of the Swedish Knee Arthroplasty Register. Eur J Cancer. 2011;47(7):1061–71.

    PubMed  Google Scholar 

  37. Visuri T, Pukkala E, Pulkkinen P, Paavolainen P. Decreased cancer risk in patients who have been operated on with total hip and knee arthroplasty for primary osteoarthrosis: a meta-analysis of 6 Nordic cohorts with 73,000 patients. Acta Orthop Scand. 2003;74(3):351–60.

    PubMed  Google Scholar 

  38. Hart AJ, Satchithananda K, Liddle AD, Sabah SA, McRobbie D, Henckel J, Cobb JP, Skinner JA, Mitchell AW. Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case–control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg Am. 2012;94(4):317–25.

    PubMed  Google Scholar 

  39. Gonzalez MH, Carr R, Walton S, Mihalko WM. The evolution and modern use of metal-on-metal bearings in total hip arthroplasty. Instr Course Lect. 2011;60:247–55.

    PubMed  Google Scholar 

  40. Chan E, Cadosch D, Gautschi OP, Sprengel K, Filgueira L. Influence of metal ions on human lymphocytes and the generation of titanium-specific T-lymphocytes. J Appl Biomater Biomech. 2011;9(2):37–43.

    Google Scholar 

  41. Martin SF. T lymphocyte-mediated immune responses to chemical haptens and metal ions: Implications for allergic and autoimmune disease. Int Arch Allergy Immunol. 2004;134:186–98.

    PubMed  CAS  Google Scholar 

  42. Noordin S, Masri B. Periprosthetic osteolysis: genetics, mechanisms and potential therapeutic interventions. Can J Surg. 2012;55(6):408–17.

    PubMed  Google Scholar 

  43. Yamamoto T, Saito M, Ueno M, Hananouchi T, Tokugawa Y, Yonenobu K. Wear analysis of retrieved ceramic-on-ceramic articulations in total hip arthroplasty: femoral head makes contact with the rim of the socket outside of the bearing surface. J Biomed Mater Res B. 2005;73(2):301–7.

    Google Scholar 

  44. Tipper JL, Hatton A, Nevelos JE, Ingham E, Doyle C, Streicher R, Nevelos AB, Fisher J. Alumina-alumina artificial hip joints. Part II: characterisation of the wear debris from in vitro hip joint simulations. Biomaterials. 2002;23(16):3441–8.

    PubMed  CAS  Google Scholar 

  45. Hatton A, Nevelos JE, Nevelos AA, Banks RE, Fisher J, Ingham E. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials. 2002;23(16):3429–40.

    PubMed  CAS  Google Scholar 

  46. Hatton A, Nevelos JE, Matthews JB, Fisher J, Ingham E. Effects of clinically relevant alumina ceramic wear particles on TNF-alpha production by human peripheral blood mononuclear phagocytes. Biomaterials. 2003;24(7):1193–204.

    PubMed  CAS  Google Scholar 

  47. Germain MA, Hatton A, Williams S, Matthews JB, Stone MH, Fisher J, Ingham E. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials. 2003;24(3):469–79.

    PubMed  CAS  Google Scholar 

  48. Gonzalez O, Smith RL, Goodman SB. Effect of size, concentration, surface area, and volume of polymethylmethacrylate particles on human macrophages in vitro. J Biomed Mater Res. 1996;30:463–73.

    PubMed  CAS  Google Scholar 

  49. Sabokbar A, Pandey R, Athanasou NA. The effect of particle size and electrical charge on macrophage-osteoclast differentiation and bone resorption. J Mater Sci Mater Med. 2003;14:731–8.

    PubMed  CAS  Google Scholar 

  50. Green TR, Fisher J, Matthews JB, Stone MH, Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res. 2000;53(5):490–7.

    PubMed  CAS  Google Scholar 

  51. Maloney W, Smith R. Periprosthetic osteolysis in total hip arthroplasty: the role of particulate wear debris. J Bone Joint Surg Am. 1995;77A:1448–61.

    Google Scholar 

  52. Shanbhag AS, Jacobs JJ, Glant TT, Gilbert JL, Black J, Galante JO. Composition and morphology of wear debris in failed uncemented total hip replacement. J Bone Joint Surg Br. 1994;76B:60–7.

    Google Scholar 

  53. Shanbhag AS, Bailey HO, Hwang DS, Cha CW, Eror NG, Rubash HE. Quantitative analysis of ultrahigh molecular weight poly- ethylene (UHMWPE) wear debris associated with total knee replacements. J Biomed Mater Res. 2000;53:100–10.

    PubMed  CAS  Google Scholar 

  54. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty: polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74A:849–63.

    Google Scholar 

  55. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Poly- ethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19:2297–302.

    PubMed  CAS  Google Scholar 

  56. Yagil-Kelmer E, Kazmier P, Rahaman MN, Bal BS, Tessman RK, Estes DM. Comparison of the response of primary human blood monocytes and the U937 human monocytic cell line to two different sizes of alumina ceramic particles. J Orthop Res. 2004;22:832–8.

    PubMed  CAS  Google Scholar 

  57. Yang SY, Ren W, Park Y, Sieving A, Hsu S, Nasser S, Wooley PH. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation. Biomaterials. 2002;23:3535–43.

    PubMed  CAS  Google Scholar 

  58. Nakashima Y, Sun DH, Trindade MC, Maloney WJ, Goodman SB, Schurman DJ, Smith RL. Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg Am. 1999;81A:603–15.

    Google Scholar 

  59. Rakshit DS, Lim J, Ly K, Ivashkiv LB, Nestor BJ, Sculco TP, Purdue PE. Involvement of complement receptor 3 (CR3) and scavenger receptor in macrophage responses to wear debris. J Orthop Res. 2006;24(11):2036–44.

    PubMed  Google Scholar 

  60. Palecanda A, Paulauskis J, Al-Mutairi E, Imrich A, Qin G, Suzuki H, Kodama T, Tryggvason K, Koziel H, Kobzik L. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med. 1999;189:1497–506.

    PubMed  CAS  Google Scholar 

  61. Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ. Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res. 2009;27(7):847–54.

    PubMed  CAS  Google Scholar 

  62. Palmbos PL, Sytsma MJ, DeHeer DH, Bonnema JD. Macrophage exposure to particulate titanium induces phosphorylation of the protein tyrosine kinase lyn and the phospholipases Cgamma-1 and Cgamma-2. J Orthop Res. 2002;20(3):483–9.

    PubMed  CAS  Google Scholar 

  63. Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol. 1999;154:203–10.

    PubMed  CAS  Google Scholar 

  64. Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L, Markel D, Sieving A, Nasser S. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23:517–26.

    PubMed  CAS  Google Scholar 

  65. Sabokbar A, Rushton N. Role of inflammatory mediators and adhesion molecules in the pathogenesis of aseptic loosening in total hip arthroplasties. J Arthroplasty. 1995;10:810–6.

    PubMed  CAS  Google Scholar 

  66. Chiba J, Rubash HE, Kim KJ, Iwaki Y. The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis. Clin Orthop. 1994;300:304–12.

    PubMed  Google Scholar 

  67. Stea S, Visentin M, Granchi D, Ciapetti G, Donati ME, Sudanese A, Zanotti C, Toni A. Cytokines and osteolysis around total hip prostheses. Cytokine. 2000;12:1575–9.

    PubMed  CAS  Google Scholar 

  68. Capper T, Lawrence AJ, Holland H, Deehan JP, Kirby JA. Metal-on-metal hips: cobalt can induce an endotoxin-like response. Ann Rheum Dis. 2013;72(3):460–1.

    Google Scholar 

  69. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115:282–90.

    PubMed  CAS  Google Scholar 

  70. Zwerina J, Hayer S, Tohidast-Akrad M, Bergmeister H, Redlich K, Feige U, Dunstan C, Kollias G, Steiner G, Smolen J, Schett G. Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 2004;50:277–90.

    PubMed  CAS  Google Scholar 

  71. Yang SY, Wu B, Mayton L, Mukherjee P, Robbins PD, Evans CH, Wooley PH. Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Gene Ther. 2004;11(5):483–91.

    PubMed  CAS  Google Scholar 

  72. Horowitz SM, Luchetti WT, Gonzales JB, Ritchie CK. The effects of cobalt chromium upon macrophages. J Biomed Mater Res. 1998;41:468–73.

    PubMed  CAS  Google Scholar 

  73. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials. 1996;17:2233–40.

    PubMed  CAS  Google Scholar 

  74. Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32(1):1–7.

    PubMed  CAS  Google Scholar 

  75. Darowish M, Rahman R, Li P, Bukata SV, Gelinas J, Huang W, Flick LM, Schwarz EM, O’Keefe RJ. Reduction of particle-induced osteolysis by interleukin-6 involves anti-inflammatory effect and inhibition of early osteoclast precursor differentiation. Bone. 2009;45(4):661–8.

    PubMed  CAS  Google Scholar 

  76. Gordon A, Wilkinson JM, Wilson AG, Stockley I, MacDonald D, Eastell R. Polymorphisms in the interleukin-one gene cluster and the risk of aseptic loosening after total hip arthroplasty. J Bone Miner Res. 2003;18:S2–326.

    Google Scholar 

  77. Zhang X, Morham SG, Langenbach R, Young DA, Xing L, Boyce BF, Puzas EJ, Rosier RN, O’Keefe RJ, Schwarz EM. Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J Bone Miner Res. 2001;16(4):660–70.

    PubMed  CAS  Google Scholar 

  78. Wang ML, Tuli R, Manner PA, Sharkey PF, Hall DJ, Tuan RS. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. J Orthop Res. 2003;21:697–707.

    PubMed  CAS  Google Scholar 

  79. Pioletti DP, Leoni L, Genini D, Takei H, Du P, Corbeil J. Gene expression analysis of osteoblastic cells contacted by orthopedic implant particles. J Biomed Mater Res. 2002;61:408–20.

    PubMed  CAS  Google Scholar 

  80. Wang ML, Nesti LJ, Tuli R, Lazatin J, Danielson KG, Sharkey PF, Tuan RS. Titanium particles suppress expression of osteoblastic phenotype in human mesenchymal stem cells. J Orthop Res. 2002;20:1175–84.

    PubMed  CAS  Google Scholar 

  81. Vermes C, Chandrasekaran R, Jacobs JJ, Galante JO, Roebuck KA, Glant TT. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone Joint Surg Am. 2001;83A:201–11.

    Google Scholar 

  82. Vermes C, Roebuck KA, Chandrasekaran R, Dobai JG, Jacobs JJ, Glant TT. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappa B, which down-regulates type I collagen synthesis in human osteoblasts. J Bone Miner Res. 2000;15:1756–65.

    PubMed  CAS  Google Scholar 

  83. Dean DD, Schwartz Z, Blanchard CR, Liu Y, Agrawal CM, Lohmann CH, Sylvia VL, Boyan BD. Ultrahigh molecular weight polyethylene particles have direct effects on proliferation, differentiation, and local factor production of MG63 osteoblast-like cells. J Orthop Res. 1999;17:9–17.

    PubMed  CAS  Google Scholar 

  84. Waris V, Zhao DS, Leminen H, Santavirta S, Takagi M, Nordsletten L, Konttinen YT. Insulin-like growth factors I and II in the aseptic loosening of total hip implants. Scand J Rheumatol. 2004;33(6):428–31.

    PubMed  CAS  Google Scholar 

  85. Lum L, Wong BR, Josien R, Becherer JD, Erdjument-Bromage H, Schlondorff J, Tempst P, Choi Y, Blobel CP. Evidence for a role of a tumor necrosis factor alpha (TNF-alpha)-converting enzyme like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem. 1999;274:13613–8.

    PubMed  CAS  Google Scholar 

  86. Theill LE, Boyle WK, Penninger JM. RANKL and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.

    PubMed  CAS  Google Scholar 

  87. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci. 1999;96:3540–5.

    PubMed  CAS  Google Scholar 

  88. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci. 2000;97:1566–71.

    PubMed  CAS  Google Scholar 

  89. Clohisy JC, Frazier E, Hirayama T, Abu-Amer Y. RANKL is an essential cytokine mediator of PMMA particle induced osteoclastogenesis. J Orthop Res. 2003;21:202–12.

    PubMed  CAS  Google Scholar 

  90. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wake-ham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23.

    PubMed  CAS  Google Scholar 

  91. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci. 1998;95:3597–602.

    PubMed  CAS  Google Scholar 

  92. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–8.

    PubMed  CAS  Google Scholar 

  93. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sanders S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    PubMed  CAS  Google Scholar 

  94. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology. 1999;140:4367–70.

    PubMed  CAS  Google Scholar 

  95. Kim KJ, Kotake S, Udagawa N, Ida H, Ishii M, Takei I, Kubo T, Takagi M. Osteoprotegerin inhibits in vitro mouse osteoclast formation induced by joint fluid from failed total hip arthroplasty. J Biomed Mater Res. 2001;58:393–400.

    PubMed  CAS  Google Scholar 

  96. Yang SY, Mayton L, Wu B, Goater JJ, Schwarz EM, Wooley PH. Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum. 2002;46:2514–23.

    PubMed  CAS  Google Scholar 

  97. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    PubMed  CAS  Google Scholar 

  98. Sabokbar A, Fujikawa Y, Neale S, Murray DW, Athanasou NA. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis. 1997;56:414–20.

    PubMed  CAS  Google Scholar 

  99. Haynes DR, Crotti TN, Zreiqat H. Regulation of osteoclast activity in peri-implant tissues. Biomaterials. 2004;25:4877–85.

    PubMed  CAS  Google Scholar 

  100. Yu X, Huang Y, Collin-Osdoby P, Osdoby P. CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res. 2004;19:2065–77.

    PubMed  CAS  Google Scholar 

  101. Tanaka R, Yasunaga Y, Hisatome T, Yamasaki T, Iwamori H, Ochi M. Serum interleukin 8 levels correlate with synovial fluid levels in patients with aseptic loosening of hip prosthesis. J Arthroplasty. 2005;20:1049–54.

    PubMed  Google Scholar 

  102. Rakshit DS, Ly K, Sengupta TK, Nestor BJ, Sculco TP, Ivashkiv LB, Purdue PE. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma: mechanistic in-sights and implications for periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88A:788–99.

    Google Scholar 

  103. Cadosch D, Chan E, Gautschi OP, Simmen HP, Filgueira L. Bio-corrosion of stainless steel by osteoclasts in vitro evidence. J Orthop Res. 2009;27(7):841–6.

    PubMed  CAS  Google Scholar 

  104. Patntirapong S, Habibovic P, Hauschka PV. Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation. Biomaterials. 2009;30(4):548–55.

    PubMed  CAS  Google Scholar 

  105. Konttinen YT, Takagi M, Mandelin J, Lassus J, Salo J, Ainola M, Li TF, Virtanen I, Liljestrom M, Sakai H, Kobayashi Y, Sorsa T, Lappalainen R, Demulder A, Santavirta S. Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis. J Bone Miner Res. 2001;16(10):1780–6.

    PubMed  CAS  Google Scholar 

  106. Kanaji A, Caicedo MS, Virdi AS, Sumner DR, Hallab NJ, Sena K. Co-Cr-Mo alloy particles induce tumor necrosis factor alpha production in MLO-Y4 osteocytes: a role for osteocytes in particle-induced inflammation. Bone. 2009;45(3):528–33.

    PubMed  CAS  Google Scholar 

  107. Orhue V, Kanaji A, Caicedo MS, Virdi AS, Sumner DR, Hallab NJ, Jahr H, Sena K. Calcineurin/nuclear factor of activated T cells (NFAT) signaling in cobalt-chromium-molybdenum (CoCrMo) particles-induced tumor necrosis factor-α (TNFα) secretion in MLO-Y4 osteocytes. J Orthop Res. 2011;29(12):1867–73.

    PubMed  CAS  Google Scholar 

  108. Atkins GJ, Welldon KJ, Holding CA, et al. The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials. 2009;30:3672–81.

    PubMed  CAS  Google Scholar 

  109. Okafor CC, Haleem-Smith H, Laqueriere P, Manner PA, Tuan RS. Particulate endocytosis mediates biological responses of human mesenchymal stem cells to titanium wear debris. J Orthop Res. 2006;24(3):461–73.

    PubMed  CAS  Google Scholar 

  110. Haleem-Smith H, Argintar E, Bush C, Hampton D, Postma WF, Chen FH, Rimington T, Lamb J, Tuan RS. Biological responses of human mesenchymal stem cells to titanium wear debris particles. J Orthop Res. 2012;30(6):853–63.

    PubMed  CAS  Google Scholar 

  111. Nawrocki B, Polette M, Burlet H, Birembaut P, Adnet JJ. Expression of gelatinase A and its activator MT1-MMP in the inflammatory periprosthetic response to polyethylene. J Bone Miner Res. 1999;14(2):288–94.

    PubMed  CAS  Google Scholar 

  112. Yao J, Glant TT, Lark MW, Mikecz K, Jacobs JJ, Hutchinson NI, Hoerrner LA, Kuettner KE, Galante JO. The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles. J Bone Miner Res. 1995;10(9):1417–27.

    PubMed  CAS  Google Scholar 

  113. Wei X, Zhang X, Zuscik MJ, Drissi MH, Schwarz EM, O’Keefe RJ. Fibroblasts express RANKL and support osteoclastogenesis in a COX-2-dependent manner after stimulation with titanium particles. J Bone Miner Res. 2005;20(7):1136–48.

    PubMed  CAS  Google Scholar 

  114. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43:250–8.

    PubMed  CAS  Google Scholar 

  115. Kotake S, Udagawa N, Hakoda M, Mogi M, Yano K, Tsuda E, Takahashi K, Furuya T, Ishiyama S, Kim KJ, Saito S, Nishikawa T, Takahashi N, Togari A, Tomatsu T, Suda T, Kamatani N. Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 2001;44:1003–12.

    PubMed  CAS  Google Scholar 

  116. Cadosch D, Sutanto M, Chan E, Mhawi A, Gautschi OP, von Katterfeld B, Simmen HP, Filgueira L. Titanium uptake, induction of RANK-L expression, and enhanced proliferation of human T-lymphocytes. J Orthop Res. 2010;28(3):341–7.

    PubMed  CAS  Google Scholar 

  117. Abu-Amer Y. Mechanisms of inflammatory mediators in bone loss diseases. In: Rosier RN, Evans CH, editors. Molecular biology in orthopedics. Rosemont: American Academy of Orthopedic Surgeons; 2003. p. 229–39.

    Google Scholar 

  118. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am. 2001;83:428–36.

    PubMed  Google Scholar 

  119. Gamerdinger K, et al. A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med. 2003;197:1345–53.

    PubMed  CAS  Google Scholar 

  120. Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82.

    PubMed  CAS  Google Scholar 

  121. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888–98.

    PubMed  CAS  Google Scholar 

  122. Wedemeyer C, Neuerburg C, Pfeiffer A, Heckelei A, von Knoch F, Hilken G, Brankamp J, Henschke F, von Knoch M, Löer F, Saxler G. Polyethylene particle-induced bone resorption in substance P-deficient mice. Calcif Tissue Int. 2007;80(4):268–74.

    PubMed  CAS  Google Scholar 

  123. Holt G, Murnaghan C, Reilly J, Meek RM. The biology of aseptic osteolysis. Clin Orthop. 2007;460:240–52.

    PubMed  CAS  Google Scholar 

  124. Cadosch D, Gautschi OP, Chan E, Simmen HP, Filgueira L. Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts. J Biomed Mater Res A. 2010;92(2):475–83.

    PubMed  Google Scholar 

  125. Miyanishi K, Trindade MC, Ma T, Goodman SB, Schurman DJ, Smith RL. Periprosthetic osteolysis: induction of vascular endothelial growth factor from human monocyte/macrophages by orthopaedic biomaterial particles. J Bone Miner Res. 2003;18(9):1573–83.

    PubMed  CAS  Google Scholar 

  126. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108:2369–79.

    PubMed  CAS  Google Scholar 

  127. Matsumoto Y, Tanaka K, Hirata G, Hanada M, Matsuda S, Shuto T, Iwamoto Y. Possible involvement of the vascular endothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclast precursor cells in arthritic joints. J Immunol. 2002;168:5824–31.

    PubMed  CAS  Google Scholar 

  128. von Knoch M, Jewison DE, Sibonga JD, Turner RT, Morrey BF, Loer F, Berry DJ, Scully SP. Decrease in particle-induced osteolysis in obese (ob/ob) mice. Biomaterials. 2004;25(19):4675–81.

    Google Scholar 

  129. Wang W, Ouyang Y, Poh CK. Orthopaedic implant technology: biomaterials frompast to future. Ann Acad Med Singapore. 2011;40(5):237–44.

    PubMed  Google Scholar 

  130. Wooley PH, Schwarz EM. Aseptic loosening. Gene Ther. 2004;11(4):402–7.

    PubMed  CAS  Google Scholar 

  131. Ren W, Blasier R, Peng X, Shi T, Wooley PH, Markel D. Effect of oral erythromycin therapy in patients with aseptic loosening of joint prostheses. Bone. 2009;44(4):671–7.

    PubMed  CAS  Google Scholar 

  132. Rawal SY, Rawal YB. Non-antimicrobial properties of tetracyclines–dental and medical implications. West Indian Med J. 2001;50:105–8.

    PubMed  CAS  Google Scholar 

  133. Holmes SG, Still K, Buttle DJ, Bishop NJ, Grabowski PS. Chemically modified tetracyclines act through multiple mechanisms directly on osteoclast precursors. Bone. 2004;35:471–8.

    PubMed  CAS  Google Scholar 

  134. Zhang C, Tang TT, Ren WP, Zhang XL, Dai KR. Inhibiting wear particles-induced osteolysis with doxycycline. Acta Pharmacol Sin. 2007;28(10):1603–10.

    PubMed  CAS  Google Scholar 

  135. Millett PJ, Allen MJ, Bostrom MP. Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am. 2002;84A:236–49.

    Google Scholar 

  136. Wedemeyer C, Von KF, Pingsmann A, Hilken G, Sprecher C, Saxler G, et al. Stimulation of bone formation by zoledronic acid in particle-induced osteolysis. Biomaterials. 2005;26:3719–25.

    PubMed  CAS  Google Scholar 

  137. Hilding M, Aspenberg P. Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop Scand. 2006;77:912–6.

    Google Scholar 

  138. Ryd L, Albrektsson BE, Carlsson L, Dansgard F, Herberts P, Lindstrand A, et al. Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br. 1995;77B:377–83.

    Google Scholar 

  139. Thillemann TM, Pedersen AB, Mehnert F, Johnsen SP, Søballe K. Postoperative use of bisphosphonates and risk of revision after primary total hip arthroplasty: a nationwide population-based study. Bone. 2010;46(4):946–51.

    PubMed  CAS  Google Scholar 

  140. Rubash HE, Dorr L, Jacobs J, Maloney W, Saag K, Malbecq W, et al. Doesalendronate inhibit the progression of periprosthetic osteolysis? Tran Orthop Res Soc. 1888;2004:29.

    Google Scholar 

  141. Aspenberg P, Agholme F, Magnusson P, Fahlgren A. Targeting RANKL for reduction of bone loss around unstable implants: OPG-Fc compared to alendronate in a model for mechanically induced loosening. Bone. 2011;48(2):225–30.

    PubMed  CAS  Google Scholar 

  142. Wilkinson JM, Stockley I, Peel NF, Hamer AJ, Elson RA, Barrington NA, Eastell R. Effect of pamidronate in preventing local bone loss after total hip arthroplasty: a randomized, double-blind, controlled trial. J Bone Miner Res. 2001;16(3):556–64.

    PubMed  CAS  Google Scholar 

  143. Childs LM, Goater JJ, O’Keefe RJ, Schwarz EM. Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res. 2001;16(2):338–47.

    PubMed  CAS  Google Scholar 

  144. Childs LM, Paschalis EP, Xing L, Dougall WC, Anderson D, Boskey AL, Puzas JE, Rosier RN, O’Keefe RJ, Boyce BF, Schwarz EM. In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 2002;17(2):192–9.

    PubMed  CAS  Google Scholar 

  145. Xu J, Cheng T, Feng HT, Pavlos NJ, Zheng MH. Structure and function of V-ATPases in osteoclasts: potential therapeutic targets for the treatment of osteolysis. Histol Histopathol. 2007;22(4):443–54.

    PubMed  CAS  Google Scholar 

  146. Su X, Floyd DH, Hughes A, Xiang J, Schneider JG, Uluckan O, Heller E, Deng H, Zou W, Craft CS, Wu K, Hirbe AC, Grabowska D, Eagleton MC, Townsley S, Collins L, Piwnica-Worms D, Steinberg TH, Novack DV, Conley PB, Hurchla MA, Rogers M, Weilbaecher KN. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest. 2012;122(10):3579–92.

    PubMed  CAS  Google Scholar 

  147. Von Knoch F, Wedemeyer C, Heckelei A, Saxler G, Hilken G, Brankamp J, Sterner T, Landgraeber S, Henschke F, Loer F, von Knoch M. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis. Biomaterials. 2005;26:5783–9.

    Google Scholar 

  148. Thillemann TM, Pedersen AB, Mehnert F, Johnsen SP, Søballe K. The risk of revision after primary total hip arthroplasty among statin users: a nationwide population-based nested case–control study. J Bone Joint Surg Am. 2010;92(5):1063–72.

    PubMed  Google Scholar 

  149. Baron R, Hesse E. Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metab. 2012;97(2):311–25.

    PubMed  CAS  Google Scholar 

  150. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492(1):1–18.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofilos Karachalios MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Karachalios, T., Koutalos, A. (2014). The Biology of Aseptic Loosening. In: Karachalios, T. (eds) Bone-Implant Interface in Orthopedic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-5409-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5409-9_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5408-2

  • Online ISBN: 978-1-4471-5409-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics