Skip to main content

The Application of Life Cycle Assessment on Agricultural Production Systems with Reference to Lignocellulosic Biogas and Bioethanol Production as Transport Fuels

  • Chapter
  • First Online:
Life Cycle Assessment of Renewable Energy Sources

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The need for new approaches in agricultural production such as these of integrated agricultural systems for food and energy production necessitates the rapprochement of these systems in terms of their environmental burden. This in combination with the importance of lignocellulosic materials for biofuel production makes the system under examination extremely complex. The feedstock production, transport, processing, and conversion of cellulosic materials have not been attempted to any real degree anywhere in the world; hence, a number of sustainability issues related to energy inputs and environmental quality need to be examined. This highlights the importance of LCA as an important optimization tool. Nevertheless, the interactions and intra-, interrelationships necessitate a thorough study of the system under examination and a good knowledge of life cycle thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aines G, Klopfenstein t, Stock R (1986) “Distillers Grains” Nebraska cooperative extension MP51. University of Nebraska, Lincoln

    Google Scholar 

  • Anonymous (2007) Energy balance optimisation for an integrated arable/livestock farm unit. Cropgen, Renewable energy from crops and agrowastes, SES6- CT-2004-502824, University of Vienna (BOKU-IFA)

    Google Scholar 

  • Anonymous (2008) Forests and energy-key issues. FAO Forestry Paper 154, Food and Agriculture Organization of the United Nations, Rome 2008

    Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  Google Scholar 

  • Bare JC, Norris GA, Pennington DW et al (2003) TRACI-The tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6(3):49–78

    Google Scholar 

  • Basset-Mens C, Ledgard S, Boyes M (2009) Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol Econ 68(6):1615–1625

    Article  Google Scholar 

  • Bata RK, Bhonot J (eds) (2011) Energy demand-agriculture. Teri energy data directory and yearbook 2010. The Energy and Resources Institute, 2011, Teri Press, New Delhi

    Google Scholar 

  • Baumann H, Tillman AM (2004) The hitch hiker’s guide to LCA. Studentlitteratur, Lund, Sweden

    Google Scholar 

  • Beno Z, Boran J, Houdkova L, Dlabaja T, Sponar J (2009) Cofermentation of kitchen waste with sewage sludge. Chem Eng Trans 18:677–682

    Google Scholar 

  • Benzie JAH, Hynes S (2013) Suitability of microalgae and seaweeds for biomethane production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (2013) (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge, London

    Google Scholar 

  • Bernet N, Beline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol 100:5431–5436

    Article  Google Scholar 

  • Board (Biomass Research and Development Board) (2009). Increasing feedstock production for biofuels: economic drivers, environmental implications, and the role of research. Biomass Research and Development Initiative, http://www.esd.ornl.gov/eess/IncreasingBiofuelsFeedstockProduction.pdf. Accessed Feb 2013

  • Bogdanski A, Dubois O, Jamieson C, Krell R (2010) Making integrated food- energy systems work for people and climate: an overview. Environment and natural resources management paper 45, environment climate change [bioenergy] monitoring and assessment, food and agriculture organization of the United Nations, Rome 2010

    Google Scholar 

  • Borjesson P, Tufvesson L, Lantz M (2011) Life cycle assessment of biofuels in Sweden. Lund University, Department of Technology and Society, Environmental and energy systems studies, report no. 70 May 2010

    Google Scholar 

  • BP (2012) BP statistical review of world energy June 2012. www.bp.com/statisticalreview. Accessed Dec 2012

  • Bransby D (2007) Cellulosic biofuel technologies, a report sponsored by the Alabama department of economic and community affairs through the southeast biomass state and regional partnership. Auburn University, Auburn, February 2007

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland

    Google Scholar 

  • Carlsson-Kanyama A (1998) Climate change and dietary choices-how can emissions of greenhouse gases from food consumption be reduced? Food Policy 23:277–293

    Article  Google Scholar 

  • Casey JW, Holden NM (2005) Analysis of greenhouse gas emissions from the average Irish milk production system. Agric Syst 86:97–114

    Article  Google Scholar 

  • Casey JW, Holden NM (2006) Greenhouse gas emissions from conventional, agri-environmental scheme and organic Irish suckler-beef units. J Environ Qual 35:231–239

    Article  Google Scholar 

  • Cederberg C, Mattsson B (2000) Life cycle assessment of milk production‐a comparison of conventional and organic farming. J Cleaner Prod 8:49–60

    Google Scholar 

  • Cederberg C, Stadig M (2003) System expansion and allocation in life cycle assessment of milk and beef production. Int J LCA 8:350–356

    Google Scholar 

  • Chambers B, Taylor M (2013) The use of digestate as a substitute for manufactured fertiliser. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems: a LCA case study. Appl Energy 87:47–57

    Article  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53(8):434–447

    Article  Google Scholar 

  • Cowell SJ (1999) Use of environmental life cycle assessment to evaluate alternative agricultural production systems. In: Proceedings of the 52nd N. Z. plant protection conference 1999, pp 40–44

    Google Scholar 

  • Cropgen (2004a) D22: energy balance optimisation for an integrated arable/livestock farm unit. University of Jyvaskyla. http://www.cropgen.soton.ac.uk/deliverables.htm. Accessed Jan 2013

  • Cropgen (2004b) D25: life cycle energy balances on a number of crop species. University of Vienna (BOKU-IFA). http://www.cropgen.soton.ac.uk/deliverables.htm. Accessed Jan 2013

  • Dahllof L (2005) LCA methodology issues for textile products. Masters Thesis, Technical report no. 2004:8. Chalmers University of Technology, Goteborg, Sweden

    Google Scholar 

  • Dalgaard T, Halberg N, Porter JR (2001) A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agric Ecosyst Environ 87(1):51–65

    Article  Google Scholar 

  • Dearman B, Bentham RH (2007) Anaerobic digestion of food waste: comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids. Waste Manage (Oxford) 27:1792–1799

    Article  Google Scholar 

  • Delucchi M A (2006) Lifecycle analysis of biofuels. Report UCD-ITS-RR-06-08. Institute of Transportation Studies, University of California, Davis. www.its.ucdavis.edu/people/faculty/delucchi. Accessed Jan 2013

  • Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energy Sources: Part A 30:27–37

    Article  Google Scholar 

  • Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:S151–S161

    Article  Google Scholar 

  • Di Nicola G, Santecchia E, Santori G, Polonara F (2011) Advances in the development of bioethanol: a review. In: Aurelio M, Bernardes DS (eds) Biofuel’s engineering process technology. Intecheweb.org Published by InTech, Rijeka, Croatia

    Google Scholar 

  • U.S. DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy. www.doegenomestolife.org/biofuels. Accessed Ja 2013

  • U.S. DOE (2010) National algal biofuels technology roadmap. U.S., Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. http://biomass.energy.gov. Accessed Sep 2012

  • Earley J, McKeown A (2009) Smart choices for biofuels. Worldwatch Institute and the Sierra Club, Washington

    Google Scholar 

  • EC (2003) Council regulation EC/1782/2003 for establishing common rules for direct support schemes under the common agricultural policy and establishing certain support schemes for farmers. Official J Eur Union L270/1-L270/69

    Google Scholar 

  • EC (2009) Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing, directives 2001/77/EC and 2003/30/EC. Official J Eur Union

    Google Scholar 

  • EC (2010) The international reference life cycle data system (ILCD) handbook: general guide for life cycle assessment—detailed guidance. European Commission, Joint Research Centre, Publications office of the European Union, Luxembourg

    Google Scholar 

  • EIA (2013) US energy information administration, independent statistics and analysis, countries, international energy statistics. www.eia.gov. Accessed Jan 2013

  • Eisentraut A (2010) Sustainable production of second generation biofuels. Information paper, International Energy Agency

    Google Scholar 

  • Ekvall T, Finnveden G (2001) Allocation in ISO 14041: a critical review. J Cleaner Prod 9:197–208

    Article  Google Scholar 

  • Elsayed M, Mortimer N (2001) Carbon and energy modelling of biomass systems: conversion plant and data updates. UK Department of Trade and Industry

    Google Scholar 

  • EPA (2010) EPA finalizes regulations for the national renewable fuel standard program for 2010 and beyond. Technical report EPA420-F-10-007, United States Environmental Protection Agency, Office of Transportation and Air Quality. http://www.epa.gov/otaq/renewablefuels/420f10007.pdf. Accessed Nov 2012

  • EUBIA (2012) EC Policy-Overview of new directives. Eur Biomass Ind Assoc Newslett 12/12. www.eubia.org. Accessed Dec 2012

  • European Biofuels Technology Platform (undated). Cellulosic ethanol. http://www.biofuelstp.eu/cell_ethanol.html#ce1. Accessed Jan 2013

  • Eze JI, Ojike O (2012) Anaerobic production of biogas from maize wastes. Int J Phys Sci 7(6):982–987

    Google Scholar 

  • FAO (Food and Agriculture Organization) (2008) The state of food and agriculture. Food and Agriculture Organization of the United Nations, Rome 2008

    Google Scholar 

  • Farrell AE, Pelvin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  Google Scholar 

  • Fava JA, Denison R, Jones B, Curran MA, Vigon B, Selke S, Barnum J (eds) (1994) A technical framework for life cycle assessment. Pubs Society of Environmental Toxicology and Chemistry (SETAC) and SETAC Foundation for Environmental Education, FL, USA

    Google Scholar 

  • Fawer M (2001) Concepts of life cycle assessments (LCA). Seminar on environmental tools-a competitive option. EMPA, St. Gallen

    Google Scholar 

  • Ferraro LA (1999) Proposição de método de avaliação de sistemas de produção e de sustentabilidade. MSc Thesis, USP/ESALQ, Piracicaba

    Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 7–21

    Google Scholar 

  • Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresour Technol 100(12):3043–3047

    Article  Google Scholar 

  • Frankl P, Rubik F (eds) (2000) Life cycle assessments in industry and business, adoption patterns, applications and implications. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Frischknecht R, Jungbluth N (eds) (2007) Overview and methodology. Data v2.0 (2007). Ecoinvent report no. 1, Dubendorf, December 2007

    Google Scholar 

  • Gerin PA, Vliegen F, Jossart JM (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99(7):2620–2627

    Article  Google Scholar 

  • Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100(21):4919–4930

    Article  Google Scholar 

  • Grant T, Beer T, Campbell PK, Batten D (2008) Life cycle assessment of environmental outcomes and greenhouse gas emissions from biofuels production in Western Australia. Report KN29A/WA/F2.9 to The Department of Agriculture and Food Government of Western Australia, September 2008

    Google Scholar 

  • Griffith D, Parsons S (1983) Energy requirements for various tillage-planting systems. Purdue University Cooperative Extension Service, NRC-202. Purdue University, West Lafayette. http://www.ces.purdue.edu/extmedia/NCR/NCR-202-W.html. Accessed Jan 2013

  • Haas G, Wetterich F, Geier U (2000) Life cycle assessment framework in agriculture on the farm level. Int J LCA 5(6):345–348

    Article  Google Scholar 

  • Haas G, Wetterich F, Kopke U (2001) Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agr Ecosyst Environ 83:43–53

    Google Scholar 

  • Harris S, Narayanaswamy V (2009) A literature review of life cycle assessment in agriculture. RIRDC publication no. 09/029, RIRDC project no. PRJ-002940, March 2009, Rural Industries Research and Development Corporation

    Google Scholar 

  • Hayashi K, Gaillard G, Nemecek T (2005) Life cycle assessment of agricultural production systems: current issues and future perspectives. In: International seminar on technology development for good agriculture practice in Asia and Oceania, Epochal Tsukuba, 25–26 Oct 2005

    Google Scholar 

  • Heinberg R, Bomford M (2009) The food and farming transition: toward a post-carbon food system. Post Carbon Institute and The Soil Association. www.postcarbon.org/food. Accessed Jan 2013

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  Google Scholar 

  • Hetz JH (1992) Energy utilization in Chilean agriculture. Agric Mech Asia Afr Lat Am 23:52–56

    Google Scholar 

  • Holmes J (2006) Impulses towards a multifunctional transition in rural Australia: gaps in the research agenda. J Rural Stud 22:142–160

    Article  Google Scholar 

  • Holm-Nielsen JB, Oleskowicz-Popiel P (2008) The future of biogas in Europe: visions and targets until 2020. In: Biogas: a promising renewable energy source for Europe. AEBIOM Workshop: European Parliament Brussels, 11 Dec 2008

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484

    Article  Google Scholar 

  • Huggins DR, Buyanovsky GA, Wagner GH, Brown JR, Darmody RG, Peck TR, Lesoing GW, Vanotti MB, Bundy LG (1998) Soil organic C in the tallgrass prairie-derived region of the Corn Belt: effects of long-term crop management. Soil Tillage Res 47:219–234

    Article  Google Scholar 

  • IEA (International Energy Agency) (2007) Biofuels for transport: an international perspective

    Google Scholar 

  • IPCC (2001) Climate change 2001: synthesis report. In: Watson RT et al. (eds) A contribution of working groups I, II, and III to the third assessment report of theintegovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York

    Google Scholar 

  • ISO (1997) International organization of standardization. 1997 Environmental management—life cycle assessment—principles and framework (ISO/FDIS 14040), ISO TC 207

    Google Scholar 

  • ISO (2006) ISO Norm 14044:2006 international standard. In: Environmental management—life CYCLE assessment—requirements and guidelines. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  Google Scholar 

  • Kammen DM (2007) Transportation’s next big thing is already here. May, GreenBiz.com, Climate Wise. URL: http://www.greenbiz.com/news/columns_third.cfm?NewsID=35189. Accessed Jan 2013

  • Kammen DM, Farrell AE, Plevin RJ, Jones AD, Nemet GF, Delucchi MA (2007) Energy and greenhouse impacts of biofuels: a framework for analysis. OECD Research Round Table: Biofuels: Linking support to performance. Version 7 Sep 2007

    Google Scholar 

  • Karlsson A (2003) Comparative assessment of fuel-based systems for space heating. Division of Environmental and Energy Studies, Lund University, Lund

    Google Scholar 

  • Kelm M, Wachendorf M, Trott H, Volkers K, Taube F (2004) Performance and environmental effects of forage production on sandy soils. III. Energy efficiency in forage production from grassland and maize for silage. Grass Forage Sci 59(1):69–79

    Article  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kim KH, Tucker MP, Nguyen QA (2002) Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog 18(3):489–494

    Article  Google Scholar 

  • Korres NE (2005) Encyclopaedic Dictionary of Weed Science: theory and Digest. Pub Lavoisier SAS, Intercept Ltd. ISBN: 1-898298-99-8

    Google Scholar 

  • Korres NE (2013) Life cycle assessment as a tool for assessing biomethane production sustainability. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Korres NE, Nizami AS (2013) Variation in anaerobic digestion. Need for process monitoring. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel? Biofuels, Bioprod Biorefin 4(3):310–325

    Article  Google Scholar 

  • Korres NE, Thamsiriroj T, Smyth B, Nizami AS, Singh A, Murphy JD (2011) Grass biomethane for agriculture and energy. In: Lichtfouse E (ed) Genetics, biofuels and local farming systems, sustainable agriculture reviews, vol 7. Springer Science & Business Media, pp 5–50

    Google Scholar 

  • Korres NE, O'Kiely P, Benzie JAH, West JS (2013) Bioenergy Production by Anaerobic Digestion. Using Agricultural Biomass and Organic Waste. Pub Earthscan from Routledge/ Taylor and Francis Publishing Group. ISBN 978-0-415-69840-5

    Google Scholar 

  • Labutong N, Mosley J, Smith R, Willard J (2012) Life-cycle modelling and environmental impact assessment of commercial scale biogas production. MSc Thesis, University of Michigan, School of Natural Resources and Environment

    Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990

    Article  Google Scholar 

  • Lange JP (2007) Lignocellulose conversion: an Introduction to chemistry, process and economics. Biofuels, Bioprod Biorefin 1:39–48

    Article  Google Scholar 

  • Larson D, Fangmeier D (1978) Energy in irrigated crop production. Trans Am Soc Agric Eng 21:1075–1080

    Article  Google Scholar 

  • Lau MH, Richardson JW, Outlaw JL, Holtzapple MT, Ochoa RF (2006) The economics of ethanol from sweet sorghum using the MixAlco process. AFPC research report 06-2, 11 Aug, Texas A&M University. http://www.afpc.tamu.edu/pubs/2/446/RR%2006-2.pdf. Accessed Dec 2012

  • Lindfors LG, Christiansen K, Hoffman L, Kruger I, Virtanen Y, Juntilla V, Hanssen OJ, Ronning A (1999) Nordic guidelines on life-cycle assessment: nord 1995:20, 3rd edn. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Liska AJ, Yang HS, Bremer VR, Klopfenstein TJ, Walters DT, Erickson GE, Cassman KG (2009) Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. J Ind Ecol 13(1):58–74

    Article  Google Scholar 

  • Loerincik Y, Tatti E, Belloto S, Jolliet O, Mousset J, Lepochat S (2008) Results of a literature review: life cycle assessment of agriculture production. In: 6th International conference on LCA in the Agri-Food Sector, Zurich, 12–14 Nov 2008

    Google Scholar 

  • Lukehurst CT, Frost P, Seadi T Al (2010) Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy, Task 37

    Google Scholar 

  • Luo L, van der Voet E, Huppes G, de Haes Udo HA (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14:529–539

    Article  Google Scholar 

  • Macedo IC, Leal MRLV, Silva JEAR (2003). Greenhouse gas emissions in the production and use of ethanol in Brazil: Present situation (2002). Prepared for the Secretariat of the Environment, Sao Paulo

    Google Scholar 

  • Marsden T (1999) Rural futures: the consumption countryside and its regulation. Sociologia Ruralis 39:501–520

    Article  Google Scholar 

  • Marsden T, Sonnino R (2008) Rural development and the regional state: denying multifunctional agriculture in the UK. J Rural Stud 24(4):422–431

    Article  Google Scholar 

  • Mathiasson A (2008) Vehicle gas utilization in Sweden: today and tomorrow. In: 2nd Nordic biogas conference. The Swedish Gas Association, Malmö

    Google Scholar 

  • Matlock M, Thoma G, Nutter D, Costello T (2008) Energy use life cycle assessment for global cotton production practices. Final Report, 15 March 2008, Center for Agricultural and Rural Sustainability University of Arkansas Division of Agriculture

    Google Scholar 

  • McCarty PL (1982) One hundred years of anaerobic treatment. In: Hughes DE, Stafford DA, Wheatley BI, Baader W, Lettinga G, Nyns EJ, Verstraete W, Wentworth RL (eds) Anaerobic Digestion, 1981. Elsevier Biomedical Press B.V., Amsterdam, pp 3–21

    Google Scholar 

  • McEniry J, Korres NE, O’Kiely P (2013) Grass and grass silage: agronomical characteristics and biogas production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Moschini G, Cui J, Lapan H (2012) Economics of biofuels: an overview of policies, impacts and prospects. Paper prepared for presentation at the 1st AIEAA conference “Towards a Sustainable Bio-economy: Economic Issues and Policy Challenges”, Trento, 4–5 June 2012

    Google Scholar 

  • Mummey D, Smith J, Bluhm G (1998) Assessment of alternative soil management practices on N2O emissions from US agriculture. Agric Ecosyst Environ 70:79–87

    Article  Google Scholar 

  • Murphy JD, Power N (2008) How can we improve the energy balance of ethanol production from wheat? Fuel 87:1799–1806

    Article  Google Scholar 

  • Murphy JD, Power N (2009) An argument for using biomethane generated from grass as a biofuel in Ireland. Biomass Bioenergy 33:504–512

    Article  Google Scholar 

  • National Sorghum Producers (NSP) (2008) http://www.sorghumgrowers.com. Accessed February 2013

  • National Sorghum Producers (NSP) (2012) www.sorghumgrowers.com. Accessed Feb 2013

  • Nelson R (2007) Cellulosic ethanol/bioethanol in Kansas. Background Report Prepared for the Kansas Energy Council Biomass Committee, 15 May 2007

    Google Scholar 

  • Neureiter M (2013) Maize and maize silage for biomethane production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423

    Article  Google Scholar 

  • Nicol R, Sage C (eds) (2003) Evaluation of the environmental performance of the Australian dairy processing industry using life cycle assessment. Final report, Dairy Australia, June 2003

    Google Scholar 

  • Nilsson M (2001) LCA och MKB av produktion av biogas. KTH

    Google Scholar 

  • Nuri A, Keskin T, Yuruyen A (2008) Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenergy 32(12):1195–1201

    Article  Google Scholar 

  • Oren M, Ozturk H (2006) Cotton production in south-eastern Anatolia region of Turkey. J Sustain Agric 21(9):119–130

    Article  Google Scholar 

  • Ortner M, Drosg B, Stoyanova E, Bochmann G (2013) Industrial residues for biomethane production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Owen JW (2001) Water resources in life-cycle impact assessment. Considerations in choosing category indicators. J Ind Ecol 5(2):37–54

    Article  Google Scholar 

  • Parawira W, Read JS, Mattiasson B, Bjornsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32(1):44–50

    Article  Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Paustian K, Elliott ET, Cole CV (eds) Soil Organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, pp 15–49

    Google Scholar 

  • Pellizzi G (1992) Use of energy and labour in Italian agriculture. J Agric Eng Res 52:111–119

    Article  Google Scholar 

  • Perley C (2008) The status and prospects for forestry as a source of bioenergy in Asia and the Pacific. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand

    Google Scholar 

  • Pimentel D (1980) Handbook of energy utilization in agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Pimentel D (1984) Energy flow in the food system. In: Pimentel D, Hall CW (eds) Food and energy resources. Academic Press, Orlando

    Google Scholar 

  • Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78:660S–663S

    Google Scholar 

  • Pitkanen J, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16–31

    Article  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Quintero JA, Montoya MI, Sánchez OJ, Giraldo OH, Cardona CA (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy 33(3):385–399

    Article  Google Scholar 

  • Rajagopal D, Zilberman D (2007) Review of environmental, economic and policy aspects of biofuels. World Bank Policy Research Working Paper No. 4341. World Bank, Washington

    Google Scholar 

  • Rao VP, Baral SS, Dey R, Mutnuri S (2010) Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sustain Energy Rev 14(7):2086–2094

    Article  Google Scholar 

  • Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  Google Scholar 

  • Rass-Hansen J, Falsig H, Jørgensen B, Christensen CH (2007) Bioethanol: fuel or feedstock? J Chem Technol Biotechnol 82:329–333

    Article  Google Scholar 

  • Reay DS, Grace J (2007) Carbon dioxide: importance, sources and sinks. In: Reay DS, Hewitt CN, Smith KA, Grace J (eds) Greenhouse Gas Sinks. Pub. CAB International, pp 1–10

    Google Scholar 

  • Renewable Fuels Association (RFA) (2008) www.ethanolrfa.org. Accessed April 2008

  • Renouf MA, Wegner MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet producers of sugars for fermentation. Biomass Bioenergy 32(12):1144–1155

    Article  Google Scholar 

  • Rogers D, Alum M (2007) Comparing irrigation energy cost. Kansas State Research and Extension Service MF-2360, Kansas State University, Manhattan, Kansas

    Google Scholar 

  • Romanelli TL, Milan M (2005) Energy balance methodology and modelling of supplementary forage production for cattle in Brazil. Sci Agric 62(1):1–7

    Article  Google Scholar 

  • Rosenberger A, Kaul HP, Senn T, Aufhammer W (2001) Improving the energy balance of bioethanol production from winter cereals: the effect of crop production intensity. Appl Energy 68(1):51–67

    Article  Google Scholar 

  • Ruggeri B, Tommasi T, Sassi G (2010) Energy balance of dark anaerobic fermentation as a tool for sustainability analysis. Int J Hydrogen Energy 35:10202–10211

    Article  Google Scholar 

  • Sachs I, Silk D (1991) Final report of the food energy nexus programme of the United Nations University, 1983–1987. UNU-FEN

    Google Scholar 

  • SAIC (2006) Life cycle assessment: principles and practice. Scientific Applications International Corporation (SAIC), report no. EPA/600/R-06/060. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio

    Google Scholar 

  • Salassi M, Fairbanks JN (2006) The economic feasibility of ethanol production from sugar in the United States. USDA/OCE (Department of Agriculture, Office of the Chief Economist). http://www.usda.gov/oce/EthanolSugarFeasibilityReport3.pdf. Accessed Jan 2012

  • Salminen E, Rintala J (2002) Anaerobic digestion of organic solid poultry slaughterhouse waste: a review. Bioresour Technol 83:13–26

    Article  Google Scholar 

  • Sapsford R, Jupp V (2006) Data collection and analysis. The Open University, SAGE, London, California, New Delhi

    Google Scholar 

  • Saunders C, Barber A, Taylor G (2006) Food miles-comparative energy/emissions performance of New Zealand’s agriculture industry. Research report 285, Lincoln University New Zealand. http://www.lincoln.ac.nz/documents/2328_rr285_s13389.pdf. Accessed Mar 2012

  • Shapouri H, Duffield JA, Wang M (2003) The energy balance of corn ethanol revisited. Trans ASAE Am Soc Agric Eng 46:4, 959–968

    Google Scholar 

  • Singh A (2013) Organic wastes for biomethane production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste, Pubs Earthscan from Routledge

    Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: a review. Bioresour Technol 101:5003–5012

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O´Mara F, Rice C, Scholes B, Sirotenko O, Howden M, MacAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric, Ecosyst Environ 118:6–28

    Google Scholar 

  • Smyth BM, Murphy JD, O’Brien CM (2009) What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew Sustain Energy Rev 13(9):2349–2360

    Article  Google Scholar 

  • Society of Environmental Toxicology and Chemistry (SETAC) (1993) Guidelines for life-cycle assessment: a ‘Code of Practice’. SETAC publications, Brussels

    Google Scholar 

  • Sreejith CC, Muraleedharan C, Arun P (2013) Life cycle assessment of producer gas derived from coconut shell and its comparison with coal gas: an Indian perspective. Int J Energy Environ Eng 4:8. doi:10.1186/2251-6832-4-8

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome 2006

    Google Scholar 

  • Svoboda S (1995) Note on life cycle analysis. Pollution prevention in corporate strategy. National Pollution Prevention Center for Higher Education, University of Michigan, pp 1–9. http://www.umich.edu/~nppcpub/

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Taylor MJ, Rollett AJ, Williams DJ, Chambers BJ (2012) Digestate-a low carbon nitrogen fertiliser. In: 8th world potato congress, Edinburgh, 27–30 May 2012

    Google Scholar 

  • Tsatsarelis C (1991) Energy requirements for cotton production in central Greece. J Agric Res 50:239–246

    Article  Google Scholar 

  • Udo de Haes HA, van Rooijen M (2005) Life cycle approaches. The road from analysis to practice. UNEP/ SETAC Life Cycle Initiative

    Google Scholar 

  • Vikman P, Gustavsson L, Klang A (2004) Evaluating greenhouse gas balances and mitigation costs of bioenergy systems: a review of methodologies. Biomass-based climate change mitigation through renewable energy (BIOMITRE)—work-package 1 June 2004

    Google Scholar 

  • Wallen A, Brandt N, Wennersten R (2004) Does Swedish consumer’s choice of food influence greenhouse gas emissions? Environ Sci Policy 7:525–535

    Article  Google Scholar 

  • Wanjura D, Upchruch D, Mahan J, Burke J (2002) Cotton yield and applied water relationships under drip irrigation. Agric Water Manag 55(2):217–236

    Article  Google Scholar 

  • Weber C, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513

    Article  Google Scholar 

  • Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32:1543–1559

    Article  Google Scholar 

  • Wells C (2001) Total energy indicators of agricultural sustainability: dairy farming case study. New Zealand Ministry of Agriculture and Forestry, New Zealand

    Google Scholar 

  • Wenisch S, Monier E (eds) (2007) Life cycle assessment of different uses of biogas from anaerobic digestion of separately collected biodegradable waste in France. Synthesis, ADEME, Gaz de France, RDC-Environment and Bio-Intelligence Service, September 2007

    Google Scholar 

  • Wenzel H, Hauschild M, Alting L (1997) Environmental assessment of products. Methodology, tools and case studies in product development, vol 1. Chapman & Hall, London, Weinheim, New York

    Book  Google Scholar 

  • Wilhelm W, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96(1):1–17

    Article  Google Scholar 

  • Williams AG, Audsley E, Sandars DL (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report, Defra Research Project IS0205, Cranfield University and Defra, Bedford

    Google Scholar 

  • Wilson GA (2007) Multifunctional agriculture. A transition theory perspective. CAB International, Wallingford

    Book  Google Scholar 

  • Woolridge AC, Ward GD, Phillips PS, Collins M, Gandy S (2006) Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material: an UK energy saving perspective. Resour Conserv Recycl 46(2006):94–103

    Article  Google Scholar 

  • World Energy Council (WEC) (2004) Comparison of energy systems using life cycle assessment. A Special Report of the World Energy Council, July 2004

    Google Scholar 

  • Worldwatch Institute (2006) Biofuels for transportation: global potential and implications for sustainable agriculture and energy in the 21st century. Washington, DC

    Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–16

    Article  Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2009(2):4. doi:10.1186/1754-6834-2-4

    Article  Google Scholar 

  • Yilmaz I, Akcoaz H, Burhan O (2004) An analysis of energy use and input costs of cotton production in Turkey. New Mediterr 3(2):58–64

    Google Scholar 

  • Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Korres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Korres, N.E. (2013). The Application of Life Cycle Assessment on Agricultural Production Systems with Reference to Lignocellulosic Biogas and Bioethanol Production as Transport Fuels. In: Singh, A., Pant, D., Olsen, S. (eds) Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5364-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5364-1_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5363-4

  • Online ISBN: 978-1-4471-5364-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics