Skip to main content

Perspectives on Technological Developments Applied to Robotics

  • Chapter
  • First Online:
The Robotics Divide

Abstract

New technological developments, as in other domains, provide the opportunity to enhance robots behavior. In this chapter, new promises and challenges of robotics are introduced. New robots are not only designed to work for humans to perform specialized, tedious, repetitive, or dangerous tasks, but also for working safely with them. A great variety of sensing modalities will be incorporated to new robots which will allow them to “understand” changing environments and to adapt their capabilities. Autonomous learning and adaptive behavior are essential when implementing robots for what to do rather than how to do it. New developments allow robots to be adapted to range over different areas as a result of using different means of locomotion, including walking, running, flying, swimming, or diving, so that they are capable of carrying out any type of work activity located at times in hostile environments impossible for humans. Science and engineering are ready to provide innovative solutions to some of the most common tasks of our society. In order to achieve this, objective efforts that crosscut many disciplines are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen B, Stokey R, Austin T, Forrester N, Goldsborough R, Purcell M, von Alt C (1997) REMUS: a small low cost AUV: system description, field trials, performance results. Proc. MTS/IEEE OCEANS 1997:994–1000

    Article  Google Scholar 

  • Aucouturier JJ, Ikeuchi K, Hirukawa H, Nakaoka S, Shiratori T, Kudoh S, Kanehiro F, Ogata T, Kozima H, Okuno HG, Michalowski MP, Ogai Y, Ikegami T, Kosuge K, Takeda T, Hirata Y (2008) Cheek to chip: dancing robots and AI’s future, IEEE Intell Syst 23(2)

    Google Scholar 

  • Bingham B, Foley B, Singh H, Camilli R, Delaporta K, Eustice R, Mallios A, Mindell D, Roman C, Sakellariou D (2010) Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J Field Robot 27(6):702–717

    Article  Google Scholar 

  • Bongard J (2011) Morphological change in machines accelerates. In: Proceedings of the national academy of sciences (PNAS), vol 6. Jan 10

    Google Scholar 

  • Chaimowicz L, Campos M, Kumar V (2002) Dynamic role assignment for cooperative robots. IEEE Conference on robotics and automation. Washington

    Google Scholar 

  • Cornblatt M, Sparky Jr (2012), http://sparkyjr.ning.com/. Accessed May 2012

  • Coxworth B (2011) Ant-Roach illustrates potential for inflatable robots. http://www.gizmag.com/ant-roach-inflatable-robot/20619/. Accessed May 2012

  • Degani A, Feng S, Choset H, Mason M (2010) Minimalist, dynamic, tube climbing robot. IEEE international conference on robotics and automation 2010

    Google Scholar 

  • Dunbabin M, Corke P, Buskey G (2004) Low-cost vision-based AUV guidance system for reef navigation. Proc IEEE ICRA 1:7–12

    Google Scholar 

  • Dunbabin M, Grinham A, and Udy J (2009) An autonomous surface vehicle for water quality monitoring. In: Proceedings of Australasian conference on robotics and automation 2009, Sydney, Australia, p 13

    Google Scholar 

  • Dunbabin M, Marques L (2012) Robotics for environmental monitoring. IEEE Robot Autom Mag 19(1)

    Google Scholar 

  • Elkins L, Sellers D and Monach WR (2008) The Autonomous maritime navigation (AMN) project: field tests, autonomous and cooperative behaviors, data fusion, sensors and vehicles. J Field Robot 27

    Google Scholar 

  • Elston JS, Roadman J, Stachura M, Argrow B, Houston A, Frew EW (2011) The tempest unmanned aircraft system for in situ observations of tornadic supercells: design and VORTEX2 flight results. J Field Robot 28(4):461–483

    Article  Google Scholar 

  • Gould J, Roemmich D, Wijffels S, Freeland H, Ignaszewsky M, Jianping X, Pouliquen S, Desaubies Y, Send U, Radhakrishnan K, Takeuchi K, Kim K, Danchenkov M, Sutton P, Kind B, Owens B and Riser S (2004) Argo profiling floats bring new era of in situ ocean observations. Eos Trans AGU 85(19):179, 190–191

    Google Scholar 

  • Griffiths G, Millard N, McPhail S, Stevenson P, Perrett J, Peabody M, Webb A, and Meldrum D (1998) Towards environmental monitoring with the Autosub autonomous underwater vehicle. In: Proceedings of international symposium on underwater technology, p 121–125

    Google Scholar 

  • Guccione S, Muscato G, Nunnari G, Virk GS, Azad AKM, Semerano A, Ghrissi M, White T and Glazebrook C (2000) Robots for volcanos: the state of the art. In: Proceedings of 3rd international conference on climbing and walking robots (CLAWAR), Madrid, Spain, p 777–788

    Google Scholar 

  • Guizzo E (2010) DARPA Seeking to revolutionize robotic manipulation. IEEE Spectrum robotics blog. http://spectrum.ieee.org/automaton/robotics/robotics-software/darpa-arm-program. Accessed Jun 2012

  • Guizzo E (2012) Soft robotics. IEEE Robot Autom 19(1):123–128

    Google Scholar 

  • Guizzo E, Deyle T (2012) Robotics trends for 2012. IEEE Robot Autom Mag 19(1)

    Google Scholar 

  • Haapasalo L, Samuels P (2011) Responding to the challenges of instrumental orchestration through physical and virtual robotics. Computers and Education. Elsevier 57(2)

    Google Scholar 

  • Hirata Y, Komatsuda S, Kosuge K (2008) Fall prevention control of passive intelligent walker based on human model. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS’08

    Google Scholar 

  • Hitz G, Pomerleau F, Garneau M, Pradalier C, Posch T, Pernthaler J, and Siegwart RY (2012) Autonomous inland water monitoring. IEEE Robot Autom Mag 1:62–72

    Google Scholar 

  • Ikemoto S, Nishigori Y, Hosoda K (2011) Adaptative Motion of a muscloskeletal robot arm utilizing physical constraint. In: Proceedings of AMAM 2011, pp 93–94

    Google Scholar 

  • Ingebretsen M (2011) Robotics trends. Thought leader interview: Mario Tremblay: http://www.roboticstrends.com/design_development/article/thought_leader_interview_mario_tremblay. Accessed April 12, 2012

  • Ishiguro H (2007) Android science: Toward a new cross-interdisciplinary framework. Robotics Research, vol. 28. Springer, Berlin, pp 118–127

    Google Scholar 

  • Iwata H, Hoshino H, Morita T, Sugano S (2000) Human-humanoid physical interaction realizing force following and task fulfilment. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS’00

    Google Scholar 

  • Iwata H, Sugano S (2005) Human-robot-contact-state identification based on tactile recognition. IEEE Trans Ind Electron 52(6):1468–1477

    Article  Google Scholar 

  • Jervis C (2005) Carebots in the Community. British Journal of Healthcare Computing and Information Management 22(8)

    Google Scholar 

  • Jung S, Kang S, Lee M, Moon I (2007) Design of robotic hand with tendon-driven three fingers. In: Proceedings of International Conference on Control, and Automatic System, Seoul, Korea, pp 83–86

    Google Scholar 

  • Kemp C, Edsinger A, Torres-Jara E (2007) Challenges for robot manipulation in human environments. IEEE Robot Autom Mag 20

    Google Scholar 

  • Kesner S, Howe R (2011a) Design principles for rapid prototyping forces sensors using 3-D Printing. IEEE/ASME Trans Mechatron 16(5)

    Google Scholar 

  • Kesner S, Howe R (2011b) Position control of motion compensation cardiac catheters. IEEE Trans Robot 27(6)

    Google Scholar 

  • Klinck H, Stelzer R, Jafarmadar K and Mellinger D (2009) AAS endurance: An autonomous acoustic sailboat for marine mammal research. In: Proceedings of International Robotic Sailing Conference (IRSC), Matosinhos, Portugal, pp 43–48

    Google Scholar 

  • Kuroki Y, Fukushima T, Nagasaka K, Moridaira T, Doi TT, Yamaguchi J (2003) A small biped entertainment robot exploring human–robot interactive applications. IEEE International Symposium on robot and human interactive communication, RO-MAN’03

    Google Scholar 

  • Leonard N, Paley D, Davis R, Fratantoni D, Lejien F, Zhang F (2011) Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J Field Robot 27(6):718–740

    Article  Google Scholar 

  • Lim H, Tanie K (1999) Collision-tolerant control of human-friendly robot with viscoelastic trunk. IEEE Trans Mechatron 4(4):417–427

    Article  Google Scholar 

  • Lin PH, Lee CS (2008) The eyewall-penetration reconnaissance observation of typhoon longwang with unmanned aerial vehicle, aerosonde. J Atmos Ocean Technol 25(1):15–25

    Article  Google Scholar 

  • Markoff J (2010) Google cars drive themselves, in traffic. The New York Times

    Google Scholar 

  • McMaster S (2012) Idaho national laboratory. https://inlportal.inl.gov/portal/server.pt/community/robotics_and_intelligence_systems/455. Accessed May 2012

  • Mizuuchi I, Nakanishi Y, Sodeyama Y, Namiki Y, Nishino T, Muramatsy N, Urata J, Hongo K, Yoshikai T, Inaba M (2007) An advanced musculoskeletal humanoid kojiro. 7th International conference on humanoid robots

    Google Scholar 

  • Molengraft R, Beetz M, Fukuda T (2011) Robot challenges: toward development of verification and synthesis techniques. IEEE Robot Autom Mag 18(4)

    Google Scholar 

  • Mukai T, Onishi M, Odashima T, Hirano S, Luo Z (2008) Development of the tactile sensor system of a human-interactive robot RI-MAN. IEEE Trans Rob 24(2):505–512

    Article  Google Scholar 

  • Ng R (2006) Digital light field photography. Dissertation. Department of computer science. Stanford University

    Google Scholar 

  • Nishio S, Ishiguro H, Hagita N (2007) Geminoid: teleoperated android of an existing person. In: de Pina Filho AC (ed) Humanoid robots: new developments, I-Tech, Vienna, Austria

    Google Scholar 

  • Nuria M, Oliver, BR (2000) A Bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8)

    Google Scholar 

  • Odashima T, Onishi M, Tahara K, Mukai T, Hirano S, Luo Z, Hosoe S (2007) Development and evaluation of a human-interactive robot platform ‘RI-MAN’. J Robot Soc Jpn 25(4):554–565 (in Japanese)

    Article  Google Scholar 

  • Odashima T, Onishi M, Tahara K, Takagi K, Asano F, Kato Y, Nakashima H, Kobayashi Y, Luo ZW, Mukai T and Hosoe S (2006) A soft human-interactive robot—RI-MAN—Video. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems

    Google Scholar 

  • Ohmura Y, Kuniyoshi Y (2007) Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS’07

    Google Scholar 

  • Oliver N (2000) Towards perceptual intelligence: statistical modeling of human individual and interactive behaviors. PhD thesis, Massachusetts Institute of Technology (MIT), Media Lab, Cambridge, Mass

    Google Scholar 

  • Oliver N, Rosario B, and Pentland A (1999) A Bayesian computer vision system for modeling human interactions. In: Proceedings of international conference on vision systems

    Google Scholar 

  • Ollero A, Lacroix S, Merino L, Gancet J, Wiklund J, Remuss V, Perez IV, Gutierrez LG, Viegas DX, Benitez MAG, Mallet A, Alami R, Chatila R, Hommel G, Lechuga FJC, Arrue BC, Ferruz J, Martinez-De Dios JR, Caballero F (2005) Multiple eyes in the skies: architecture and perception issues in the COMETS unmanned air vehicles project. IEEE Robot Autom Mag 12(2):46–57

    Article  Google Scholar 

  • Palli G, Borghesan G, Melchiorri C (2009) Tendon-based transmissions systems for robotic devices: models and control algorithms. In: Proceedings of international conference on robotics and automation. Kobe, Japan, pp 4063–4068

    Google Scholar 

  • Palli G, Borghesan G, Melchiorri C (2010) Friction and visco-elasticity effects in tendon-based transmission systems. In: Proceedings of International Conference on Robotics and Automation. Anchorange, AK, pp 3890–3895

    Google Scholar 

  • Palli G, Borghesan G, Melchiorri C (2012) Modeling, identification and control of tendon-based actuation systems. IEEE Trans Rob 28(2):277–290

    Article  Google Scholar 

  • Pfeifer R (2010) “Soft robotics”: self-organization, embodiment, and biological inspiration. Artificial Intelligence Laboratory, University of Zurich, Switzerland. http://www.iiitb.ac.in/uploads/PfeiferAbstractShortBio.pdf. Accessed May 2012

  • Pfeifer R. ECCE project (2011). http://eccerobot.org. Accessed Jun 2012

  • Pferifer R, Lungarella M, Iida F (2007) Self-organization, embodiment and biologically inspired robotics. Science 318(5853):1088–1093

    Article  Google Scholar 

  • Ramana M, Ramanathan V, Kim D, Roberts G, Corrigan C (2007) Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Quart J Royal Meteorol Soc 133(629):1913–1931

    Article  Google Scholar 

  • Rynne P, von Ellenrieder K (2009) Unmanned autonomous sailing: current status and future role in sustained ocean observations. Marine Technol Soc J 43(1):21–30

    Article  Google Scholar 

  • Schmidt PA, Maél E, Würtz RP (2006) A sensor for dynamic tactile information with applications in human-robot interaction and object exploration. Robot Auton Syst 54:1005–1014

    Article  Google Scholar 

  • Scott M (2012) JamBots: soft robots based on particle jamming, like this hexapod from iRobot. http://onlineallthenews.blogspot.com.es/2012/01/jambots-soft-robots-based-on-particle.html. Accessed May 2012

  • Seo Y, Kwak S, Yang T (2011) Mobile robot control using smart phone and its performance evaluation. Communications in computer and information science. Advanced communication and networking. Third international conference, vol 199. ACN

    Google Scholar 

  • Shang J, Combes S, Finio B, Wood R (2009) Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspiration Biomimetics 4(3)

    Google Scholar 

  • Shibata T, Tanie K (2001) Physical and affective interaction between human and mental commit robot. In: Proceedings of the ieee international conference on robotics and automation, ICRA’01

    Google Scholar 

  • Smith R, Das J, Heidarsson H, Pereira A, Arrichiello F, Cetinic I, Darjany L, Garneau ME, Howard M, Oberg C, Ragan M, Seubert E, Smith E, Stauer B, Schnetzer A, Toro-Farmer G, Caron D, Jones B and Sukhatme GS (2010a) The USC Center for Integrated Networked Aquatic PlatformS (CINAPS): observing and monitoring the Southern California Bight. IEEE Robot Autom Mag 17:20–30 (Special Issue on Marine Robotic Systems)

    Google Scholar 

  • Smith RN, Chao Y, Li PP, Caron DA, Jones BH and Sukhatme GS (2010b) Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int J Robot 26(12). http://cres.usc.edu/cgi-bin/print’pub’details.pl?pubid=646. Accessed May 2012

  • Squyres SW, Arvidson RE, Bell JF, Brückner J, Cabrol NA, Calvin W, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, d’Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Haskin L, Herkenhoff KE, Hviid S, Johnson J, Klingelhöfer G, Knoll A, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom LA, Sullican R, Wänke H, Wdowiak T, Wolff M and Yen A (2004) The spirit Rover’s Athena science investigation at Gusev Crater, Mars, Science 305(5685):794–799

    Google Scholar 

  • Stealey M, Singh A, Batalin M, Jordan B and Kaiser W (2008) NIMSAQ: a novel system for autonomous sensing of aquatic environments. In: Proceedings of IEEE ICRA, Pasadena, CA, pp 621–628

    Google Scholar 

  • Stiehl WD, Lieberman J, Breazeal C, Basel L, Lalla L, Wolf M (2005) The design of the Huggable: a therapeutic robotic companion for relational, affective touch. In: Proceedings of the AAAI fall symposium on caring machines: AI in Eldercare

    Google Scholar 

  • Takamuku S, Fukuda A, Hosoda K (2008) Repetitive grasping with anthropomorphic skin-covered hand enables robust haptic recognition. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, ThAT13.5

    Google Scholar 

  • Takeda T, Hirata Y, Kosuge K (2007) HMM-based error recovery of dance step selection for dance partner robot. In: Proceedings of the IEEE international conference on robotics and automation, ICRA’07

    Google Scholar 

  • Weekly K, Anderson L, Tinka A, and Bayen A (2011) Autonomous river navigation using the Hamilton-Jacobi framework for underactuated vehicles. In: Proceedings of IEEE conference on robotics and automation, Shanghai, China, pp 828–833

    Google Scholar 

  • Werger B, Mataric M (2000) Broadcast of local eligibility: behavior-based control for strongly cooperative robot teams. In: Proceedings of the fourth international conference on Autonomous agents

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Pérez Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Molina, C.P., Ortego, R.G., Pérez, F.M. (2014). Perspectives on Technological Developments Applied to Robotics. In: López Peláez, A. (eds) The Robotics Divide. Springer, London. https://doi.org/10.1007/978-1-4471-5358-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5358-0_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5357-3

  • Online ISBN: 978-1-4471-5358-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics