Skip to main content

Mechanisms of Atrial Fibrillation

  • Chapter
  • First Online:
Cardiac Arrhythmias

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. The prevalence of AF is increasing as the median age of the population is on rise. Incidence of AF increases with age, as one in five individuals over age 85 has AF. Several clinical conditions are associated with AF, most importantly ischemic heart disease, diabetes, hypertension, cardiomyopathy, valvular heart disease, and heart failure.

AF is a complex disease and its pathogenesis is multifactorial. The relatively recent discovery of the importance of the pulmonary veins (PV) in the origin of triggers and generation of AF has helped us better understand the pathophysiology of AF. The region of the PVs and the adjoining posterior left atrium (PLA) possesses a unique, heterogeneous pattern of myocyte orientation; the abrupt changes in electrical conduction patterns that result in these regions make the atria more susceptible to AF (by setting up substrate for reentry). Another important factor that contributes to atrial arrhythmogenesis is the unique expression of key ion channels in the atrium. Compared to the ventricles, some ion channels, e.g., I KAch and I Kur, are predominantly expressed in atrial myocytes; these channels, by contributing to shortening of refractoriness, make the atria more vulnerable to fibrillation. In addition, the PVs and PLA have a unique pattern of ion channel and gap junction expression that makes the atria susceptible to AF. Ca2+ dysregulation has also been noted to play an important role in generation and maintenance of AF, with excitation-contraction coupling being significantly altered in fibrillating myocytes (as compared to normal atrial myocytes). In addition to ion channel, gap junction, and Ca2+ remodeling, structural remodeling – specifically fibrosis – has been implicated in AF initiation and maintenance, especially in the setting of structural heart disease, e.g., heart failure. Key signaling pathways that are thought to create fibrosis in the atrium including TGF-β signaling, oxidative stress, and angiotensin II signaling. The autonomic nervous system is also thought to play an important role in generation of AF, with both the sympathetic and parasympathetic thought to play an important role in AF initiation and maintenance. Recently, Genome-wide association studies have also provided us with new insights into genetic predisposition in AF generation.

In this chapter, we have reviewed in detail the role of these pathophysiological mechanisms in the generation and maintenance of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J. 2006;27:949–53.

    PubMed  Google Scholar 

  2. Hobbs FD, Fitzmaurice DA, Mant J, Murray E, Jowett S, Bryan S, et al. A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study. Health Technol Assess. 2005;9:iii–iv, ix–x, 1–74.

    Google Scholar 

  3. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Seward JB, Bailey KR, et al. Time trends of ischemic stroke incidence and mortality in patients diagnosed with first atrial fibrillation in 1980 to 2000: report of a community-based study. Stroke. 2005;36:2362–6.

    PubMed  Google Scholar 

  4. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.

    PubMed  Google Scholar 

  5. Stevenson WG, Stevenson LW, Middlekauff HR, et al. Improving survival for patients with atrial fibrillation and advanced heart failure. J Am Coll Cardiol. 1996;28:1458–63.

    CAS  PubMed  Google Scholar 

  6. Mays DJ, Foose JM, Philipson LH, Tamkun MM. Localization of the Kv1.5 K_ channel protein in explanted cardiac tissue. J Clin Invest. 1995;96:282–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang Z, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K_ current similar to Kv1.5 cloned channel currents. Circ Res. 1993;73:1061–76.

    CAS  PubMed  Google Scholar 

  8. Blaauw Y, Schotten U, van Hunnik A, Neuberger HR, Allessie MA. Cardioversion of persistent atrial fibrillation by a combination of atrial specific and non-specific class III drugs in the goat. Cardiovasc Res. 2007;75:89–98.

    CAS  PubMed  Google Scholar 

  9. De Haan S, Greiser M, Harks E, Blaauw Y, van Hunnik A, Verheule S, et al. AVE0118, blocker of the transient outward current [I(to)] and ultrarapid delayed rectifier current [I(Kur)], fully restores atrial contractility after cardioversion of atrial fibrillation in the goat. Circulation. 2006;114:1234–42.

    PubMed  Google Scholar 

  10. Dobrzynski H, Marples DD, Musa H, Yamanushi TT, Henderson Z, Takagishi Y, et al. Distribution of the muscarinic K_ channel proteins Kir3.1 and Kir3 4 in the ventricle, atrium, and sinoatrial node of heart. J Histochem Cytochem. 2001;49:1221–34.

    CAS  PubMed  Google Scholar 

  11. Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol. 1988;405:123–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Golod DA, Kumar R, Joyner RW. Determinants of action potential initiation in isolated rabbit atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol. 1998;274:H1902–13.

    CAS  Google Scholar 

  13. Haïssaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66.

    PubMed  Google Scholar 

  14. Hwang C, Wu TJ, Doshi RN, Peter CT, Chen PS. Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation. 2000;101:1503–5.

    CAS  PubMed  Google Scholar 

  15. Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation. 2000;102:67–74.

    CAS  PubMed  Google Scholar 

  16. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Melnyk P, Hohnloser SH, Nattel S. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol. 2003;551:801–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Melnyk P, Ehrlich JR, Pourrier M, Villeneuve L, Cha TJ, Nattel S. Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res. 2005;65:104–16.

    CAS  PubMed  Google Scholar 

  18. Maupoil V, Bronquard C, Freslon JL, Cosnay P, Findlay I. Ectopic activity in the rat pulmonary vein can arise from simultaneous activation of alpha1- and beta1-adrenoceptors. Br J Pharmacol. 2007;150:899–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Henning B, Wit AL. The time course of action potential repolarization affects delayed afterdepolarization amplitude in atrial fibers of the canine coronary sinus. Circ Res. 1984;55:110–5.

    CAS  PubMed  Google Scholar 

  20. Tseng GN, Wit AL. Effects of reducing [Na_]o on catecholamine-induced delayed afterdepolarizations in atrial cells. Am J Physiol Heart Circ Physiol. 1987;253:H115–25.

    CAS  Google Scholar 

  21. Wit AL, Cranefield PF. Triggered and automatic activity in the canine coronary sinus. Circ Res. 1977;41:434–45.

    CAS  PubMed  Google Scholar 

  22. Nguyen BL, Fishbein MC, Chen LS, Chen PS, Masroor S. Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm. 2006;6:454–60.

    Google Scholar 

  23. Verheule S, Wilson E, Arora R, Engle SK, Scott L, Olgin J. Tissue structure and connexin expression of canine pulmonary veins. Cardiovasc Res. 2002;55:727–38.

    CAS  PubMed  Google Scholar 

  24. Kholova I, Kautzner J. Morphology of atrial myocardial extensions into human caval veins: a postmortem study in patients with and without atrial fibrillation. Circulation. 2004;110:483–8.

    PubMed  Google Scholar 

  25. Hassink RJ, Aretz HT, Ruskin J, Keane D. Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation. J Am Coll Cardiol. 2003;42:1108–14.

    PubMed  Google Scholar 

  26. Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, et al. Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation. 2002;105:2442–8.

    PubMed  Google Scholar 

  27. Chou CC, Nihei M, Zhou S, Tan A, Kawase A, Macias ES, et al. Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium. Circulation. 2005;111:2889–97.

    CAS  PubMed  Google Scholar 

  28. Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, et al. Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation. 2003;107:1816–21.

    PubMed Central  PubMed  Google Scholar 

  29. Kumagai K, Ogawa M, Noguchi H, Yasuda T, Nakashima H, Saku K. Electrophysiologic properties of pulmonary veins assessed using a multielectrode basket catheter. J Am Coll Cardiol. 2004;43:2281–9.

    PubMed  Google Scholar 

  30. Iwasaki YK, Nishida K, Kato T, Nattel S. Atrial fibrillation pathophysiology: implications for management. Circulation. 2011;124(20):2264–74.

    CAS  PubMed  Google Scholar 

  31. Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91:265–325.

    PubMed  Google Scholar 

  32. Wijffels M, Kirchhof C, Dorland R, Allessie M. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    CAS  PubMed  Google Scholar 

  33. Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res. 1973;33:54–62.

    CAS  PubMed  Google Scholar 

  34. Comtois P, Kneller J, Nattel S. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace. 2005;7 Suppl 2:10–20.

    PubMed  Google Scholar 

  35. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58:59–70.

    CAS  PubMed  Google Scholar 

  36. Dobrev D, Voigt N, Wehrens XH. The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res. 2011;89(4):734–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. MacLennan DH, Chen SR. Store overload-induced Ca2+ release as a triggering mechanism for CPVT and MH episodes caused by mutations in RYR and CASQ genes. J Physiol. 2009;587(pt 13):3113–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415(6868):219–26.

    CAS  PubMed  Google Scholar 

  39. Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104:2608–14.

    CAS  PubMed  Google Scholar 

  40. Tsai CTLL, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation. 2008;117:344–55.

    CAS  PubMed  Google Scholar 

  41. He X, Gao X, Peng L, Wang S, Zhu Y, Ma H, et al. Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific arkadia-mediated downregulation of Smad7. Circ Res. 2011;108(2):164–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gassanov N, Brandt MC, Michels G, Lindner M, Er F, Hoppe UC. Angiotensin II–induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation. Cell Calcium. 2006;39(2):175–86.

    CAS  PubMed  Google Scholar 

  43. Verheule S, Sato T, Everett 4th T, Engle SK, Otten D, Rubart-von der Lohe M, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta 1. Circ Res. 2004;94(11):1458–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Everett 4th T, Olgin JE. Atrial fibrosis and mechanism of atrial fibrillation. Heart Rhythm. 2007;4(3 Suppl):S24–7.

    PubMed Central  PubMed  Google Scholar 

  45. Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology. 2006;118(1):10–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Nakajima H, Nakajima HO, Salchar O, Dittie AS, Dembowsky K, Jing S, Field LJ. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res. 2000;86(5):571–9.

    CAS  PubMed  Google Scholar 

  47. Lamirault G, Gaborit N, Le Meur N, Chevalier C, Lande G, Demolombe S, et al. Gene expression profile associated with chronic atrial fibrillation and underlying valvular heart disease in man. J Mol Cell Cardiol. 2006;40(1):173–84.

    CAS  PubMed  Google Scholar 

  48. Lee KW, Everett 4th TH, Rahmutula D, Guerra JM, Wilson E, Ding C, Olgin JE. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation. 2006;114(16):1703–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802–9.

    CAS  PubMed  Google Scholar 

  50. Ponten A, Folestad EB, Pietras K, Eriksson U. Platelet-derived growth factor D induces cardiac fibrosis and proliferation of vascular smooth muscle cells in heart-specific transgenic mice. Circ Res. 2005;97(10):1036–45.

    CAS  PubMed  Google Scholar 

  51. Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J. Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol. 2011;50(3):408–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. 2001;104(2):174–80.

    CAS  PubMed  Google Scholar 

  53. Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89(6):E32–8.

    CAS  PubMed  Google Scholar 

  54. Kim YH, Lim DS, Lee JH, Shim WJ, Ro YM, Park GH, et al. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med. 2003;35(5):336–49.

    CAS  PubMed  Google Scholar 

  55. Neuman RB, Bloom HL, Shukrullah I, Darrow LA, Kleinbaum D, Jones DP, Dudley Jr SC. Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem. 2007;53(9):1652–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Ramlawi B, Otu H, Mieno S, Boodhwani M, Sodha NR, Clements RT, et al. Oxidative stress and atrial fibrillation after cardiac surgery: a case–control study. Ann Thorac Surg. 2007;84(4):1166–72.

    PubMed  Google Scholar 

  57. Korantzopoulos P, Kolettis TM, Kountouris E, Dimitroula V, Karanikis P, Pappa E, et al. Oral vitamin C administration reduces early recurrence rates after electrical cardioversion of persistent atrial fibrillation and attenuates associated inflammation. Int J Cardiol. 2005;102(2):321–6.

    PubMed  Google Scholar 

  58. Marin FRV, Climent V, Garcia A, Marco P, Lip GYH. Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke. 2003;34:1181–6.

    CAS  PubMed  Google Scholar 

  59. Goette ARC, Nepple K, Lendeckel U. Proteases and arrhythmias. In: Lendeckel U, editor. Proteases in tissue remodelling of lung and heart. New York: Plenum; 2003. p. 191–390.

    Google Scholar 

  60. Hunt MJ, Aru GM, Hayden MR, Moore CK, Hoit BD, Tyagi SC. Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. Am J Physiol Lung Cell Mol Physiol. 2002;283:L239–45.

    CAS  PubMed  Google Scholar 

  61. Crabtree GROE. NFAT signalling: choreographing the social lives of cells. Cell Mol Life Sci. 2002;109(Suppl):S67–79.

    CAS  Google Scholar 

  62. Brundel BJ, Ausma J, van Gelder IC, Van der Want JJ, van Gilst WH, Crijns HJ, Henning RH. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc Res. 2002;54:380–9.

    CAS  PubMed  Google Scholar 

  63. Bukowska A, Hirte D, Wolke C, Striggow F, Röhnert P, Huth C, Klein HU, Goette A. Activation of the calcineurin signaling pathway induces atrial hypertrophy during atrial fibrillation. Cell Mol Life Sci. 2006;63:333–42.

    CAS  PubMed  Google Scholar 

  64. Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106(6):1134–44.

    CAS  PubMed  Google Scholar 

  65. Shiroshita-Takeshita A, Mitamura H, Ogawa S, Nattel S. Rate-dependence of atrial tachycardia effects on atrial refractoriness and atrial fibrillation maintenance. Cardiovasc Res. 2009;81(1):90–7.

    CAS  PubMed  Google Scholar 

  66. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81:512–25.

    CAS  PubMed  Google Scholar 

  67. Attuel P, Childers R, Cauchemez B, Poveda J, Mugica J, Coumel P. Failure in the rate adaptation of the atrial refractory period: its relationship to vulnerability. Int J Cardiol. 1982;2:179–97.

    CAS  PubMed  Google Scholar 

  68. Boutjdir M, Le Heuzey JY, Lavergne T, Chauvaud S, Guize L, Carpentier A, Peronneau P. Inhomogeneity of cellular refractoriness in human atrium: factor of arrhythmia? Pacing Clin Electrophysiol. 1986;9:1095–100.

    CAS  PubMed  Google Scholar 

  69. Misier AR, Opthof T, van Hemel NM, Defauw JJ, de Bakker JM, Janse MJ, van Capelle FJ. Increased dispersion of “refractoriness” in patients with idiopathic paroxysmal atrial fibrillation. J Am Coll Cardiol. 1992;19:1531–5.

    CAS  PubMed  Google Scholar 

  70. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res. 1999;44:121–31.

    CAS  PubMed  Google Scholar 

  71. Brundel BJ, Van Gelder IC, Henning RH, Tieleman R, Tuinenburg AE, Wietses M, et al. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation. 2001;103:684–90.

    CAS  PubMed  Google Scholar 

  72. Skasa M, Jungling E, Picht E, Schondube F, Luckhoff A. L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res Cardiol. 2001;96:151–9.

    CAS  PubMed  Google Scholar 

  73. Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K_ channels. J Am Coll Cardiol. 2001;37:926–32.

    CAS  PubMed  Google Scholar 

  74. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res. 1999;84(7):776–84.

    CAS  PubMed  Google Scholar 

  75. Qi XY, Yeh YH, Xiao L, Burstein B, Maguy A, Chartier D, et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res. 2008;103(8):845–54.

    CAS  PubMed  Google Scholar 

  76. Goette A, Arndt M, Rocken C, Staack T, Bechtloff R, Reinhold D, et al. Calpains and cytokines in fibrillating human atria. Am J Physiol Heart Circ Physiol. 2002;283:H264–72.

    CAS  PubMed  Google Scholar 

  77. Grammer JB, Bosch RF, Kuhlkamp V, Seipel L. Molecular remodeling of Kv4.3 potassium channels in human atrial fibrillation. J Cardiovasc Electrophysiol. 2000;11:626–33.

    CAS  PubMed  Google Scholar 

  78. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM. Outward K_ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res. 1997;80:772–81.

    PubMed  Google Scholar 

  79. Dobrev D, Wettwer E, Kortner A, Knaut M, Schuler S, Ravens U. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res. 2002;54:397–404.

    CAS  PubMed  Google Scholar 

  80. Zhang H, Garratt CJ, Zhu J, Holden AV. Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans. Cardiovasc Res. 2005;66:493–502.

    CAS  PubMed  Google Scholar 

  81. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation. 2005;112:471–81.

    PubMed  Google Scholar 

  82. El-Armouche A, Boknik P, Eschenhagen T, Carrier L, Knaut M, Ravens U, Dobrev D. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006;114(7):670–80.

    CAS  PubMed  Google Scholar 

  83. Christ T, Boknik P, Wöhrl S, Wettwer E, Graf EM, Bosch RF, et al. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation. 2004;110(17):2651–7.

    CAS  PubMed  Google Scholar 

  84. Luo X, et al. Critical role of microRNAs miR-26 and miR-101 in atrial electrical remodeling in experimental atrial fibrillation. Circulation. 2010;122, A19435.

    Google Scholar 

  85. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, et al. The G protein-gated potassium current I(K, ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112(24):3697–706.

    CAS  PubMed  Google Scholar 

  86. Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S. Kir3-based inward rectifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation. 2006;113(14):1730–7.

    CAS  PubMed  Google Scholar 

  87. Karle CA, Zitron E, Zhang W, Wendt-Nordahl G, Kathöfer S, Thomas D, et al. Human cardiac inwardly-rectifying K+ channel Kir(2.1b) is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system. Circulation. 2002;106(12):1493–9.

    CAS  PubMed  Google Scholar 

  88. Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, et al. Differential phosphorylation dependent regulation of constitutively active and muscarinic receptor-activated IK, ACh channels in patients with chronic atrial fibrillation. Cardiovasc Res. 2007;74:426–37.

    CAS  PubMed  Google Scholar 

  89. Workman AJ, Kane KA, Rankin AC. Characterisation of the Na, K pump current in atrial cells from patients with and without chronic atrial fibrillation. Cardiovasc Res. 2003;59:593–602.

    CAS  PubMed  Google Scholar 

  90. Brandt MC, Priebe L, Bohle T, Sudkamp M, Beuckelmann DJ. The ultrarapid and the transient outward K_ current in human atrial fibrillation. Their possible role in postoperative atrial fibrillation. J Mol Cell Cardiol. 2000;32:1885–96.

    CAS  PubMed  Google Scholar 

  91. Schotten U, Duytschaever M, Ausma J, Eijsbouts S, Neuberger HR, Allessie M. Electrical and contractile remodeling during the first days of atrial fibrillation go hand in hand. Circulation. 2003;107:1433–9.

    PubMed  Google Scholar 

  92. Duffy HS, Wit AL. Is there a role for remodeled connexins in AF? No simple answers. J Mol Cell Cardiol. 2008;44:4–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Wilhelm M, Kirste W, Kuly S, Amann K, Neuhuber W, Weyand M, et al. Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent, and postoperative atrial fibrillation. Heart Lung Circ. 2006;15:30–7.

    CAS  PubMed  Google Scholar 

  94. Polontchouk L, Haefliger JA, Ebelt B, Schaefer T, Stuhlmann D, Mehlhorn U, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol. 2001;38:883–91.

    CAS  PubMed  Google Scholar 

  95. Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002;54:361–79.

    CAS  PubMed  Google Scholar 

  96. Takeuchi S, Akita T, Takagishi Y, Watanabe E, Sasano C, Honjo H, Kodama I. Disorganization of gap junction distribution in dilated atria of patients with chronic atrial fibrillation. Circ J. 2006;70:575–82.

    PubMed  Google Scholar 

  97. Nattel S. Defining “culprit mechanisms” in arrhythmogenic cardiac remodeling. Circ Res. 2004;94:1403–5.

    CAS  PubMed  Google Scholar 

  98. Goette A, Juenemann G, Peters B, Klein H, Roessner A, Huth C, Rocken C. Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovasc Res. 2002;54:390–6.

    CAS  PubMed  Google Scholar 

  99. Pedersen OD, Bagger H, Kober L, Torp-Pedersen C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation. 1999;100:376–80.

    CAS  PubMed  Google Scholar 

  100. Vermes ETJ, Bourassa MG, Racine N, Levesque S, White M, Guerra PG, Ducharme A. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) trials. Circulation. 2003;107:2926–31.

    PubMed  Google Scholar 

  101. Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87–95.

    CAS  PubMed  Google Scholar 

  102. Boyden PA, Hoffman BF. The effects on atrial electrophysiology and structure of surgically induced right atrial enlargement in dogs. Circ Res. 1981;49:1319–31.

    CAS  PubMed  Google Scholar 

  103. Neuberger HR, Schotten U, Verheule S, Eijsbouts S, Blaauw Y, van Hunnik A, Allessie M. Development of a substrate of atrial fibrillation during chronic atrioventricular block in the goat. Circulation. 2005;111:30–7.

    PubMed  Google Scholar 

  104. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997;96:3157–63.

    CAS  PubMed  Google Scholar 

  105. Spach MS, Heidlage JF, Barr RC, Dolber PC. Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm. 2004;1:500–15.

    PubMed  Google Scholar 

  106. Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm. 2007;4:S61–4.

    PubMed Central  PubMed  Google Scholar 

  107. Kneller J, Zou R, Vigmond EJ, Wang Z, Leon LJ, Nattel S. Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res. 2002;90:E73–87.

    CAS  PubMed  Google Scholar 

  108. Liang BT, Frame LH, Molinoff PB. Beta 2-adrenergic receptors contribute to catecholamine-stimulated shortening of action potential duration in dog atrial muscle. Proc Natl Acad Sci. 1985;82:4521–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol. 2006;47(6):1196–206.

    CAS  PubMed  Google Scholar 

  110. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624–31.

    PubMed  Google Scholar 

  111. Patterson E, Yu X, Huang S, Garrett M, Kem DC. Suppression of autonomic-mediated triggered firing in pulmonary vein preparations, 24 hours postcoronary artery ligation in dogs. J Cardiovasc Electrophysiol. 2006;17(7):763–70.

    PubMed  Google Scholar 

  112. Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol. 2004;43(3):483–90.

    CAS  PubMed  Google Scholar 

  113. Crawford T, Chugh A, Good E, et al. Clinical value of noninducibility by high-dose isoproterenol versus rapid atrial pacing after catheter ablation of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2010;21:13–20.

    PubMed  Google Scholar 

  114. Pappone C, Santinelli V, Manguso F, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109:327–34.

    PubMed  Google Scholar 

  115. Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 2003;108:668–71.

    PubMed  Google Scholar 

  116. Arruda M, Natale A. Ablation of permanent AF: adjunctive strategies to pulmonary veins isolation: targeting AF NEST in sinus rhythm and CFAE in AF. J Interv Card Electrophysiol. 2008;23:51–7.

    PubMed  Google Scholar 

  117. Porter M, Spear W, Akar JG, et al. Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms. J Cardiovasc Electrophysiol. 2008;19:613–20.

    PubMed  Google Scholar 

  118. Aimé-Sempé C, Folliguet T, Rücker-Martin C, et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol. 1999;34:1577–86.

    PubMed  Google Scholar 

  119. Katritsis D, Giazitzoglou E, Sougiannis D, et al. Complex fractionated atrial electrograms at anatomic sites of ganglionated plexi in atrial fibrillation. Europace. 2009;11:308–15.

    PubMed  Google Scholar 

  120. Arora R, Ulphani JS, Villuendas R, Ng J, Harvey L, Thordson S, et al. Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am J Physiol Heart Circ Physiol. 2008;294:H134–44.

    CAS  PubMed  Google Scholar 

  121. Tan AY, Li H, Wachsmann-Hogiu S, Chen LS, Chen PS, Fishbein MC. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol. 2006;48(1):132–43.

    PubMed  Google Scholar 

  122. Arora R, Ng J, Ulphani J, Mylonas I, Subacius H, Shade G, et al. Unique autonomic profile of the pulmonary veins and posterior left atrium. J Am Coll Cardiol. 2007;49:1340–8.

    PubMed  Google Scholar 

  123. Ng J, Villuendas R, Cokic I, Schliamser JE, Gordon D, Koduri H, et al. Autonomic remodeling in the left atrium and pulmonary veins in heart failure: creation of a dynamic substrate for atrial fibrillation. Circ Arrhythm Electrophysiol. 2011;4:388–96.

    PubMed Central  PubMed  Google Scholar 

  124. Ehrlich JR, Zicha S, Coutu P, Hebert TE, Nattel S. Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Cardiovasc Res. 2005;67(3):520–8.

    CAS  PubMed  Google Scholar 

  125. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42(3):240–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Ozgen N, Dun W, Sosunov EA, Anyukhovsky EP, Hirose M, Duffy HS, et al. Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc Res. 2007;75(4):758–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, et al. Ablation of a Ca2+ − activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol. 2009;587(pt 5):1087–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Nyberg MT, Stoevring B, Behr ER, Ravn LS, McKenna WJ, Christiansen M. The variation of the sarcolipin gene (SLN) in atrial fibrillation, long QT syndrome and sudden arrhythmic death syndrome. Clin Chim Acta. 2007;375(1–2):87–91.

    CAS  PubMed  Google Scholar 

  129. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    CAS  PubMed  Google Scholar 

  130. Olson TM, Alekseev AE, Liu XK, Park S, Zingman LV, Bienengraeber M, et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15(14):2185–91.

    CAS  PubMed  Google Scholar 

  131. Li Q, Huang H, Liu G, Lam K, Rutberg J, Green MS, et al. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun. 2009;380(1):132–7.

    CAS  PubMed  Google Scholar 

  132. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–4.

    CAS  PubMed  Google Scholar 

  133. Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16(4):394–6.

    PubMed  Google Scholar 

  134. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005;332(4):1012–9.

    CAS  PubMed  Google Scholar 

  135. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    PubMed Central  PubMed  Google Scholar 

  136. Eckardt L, Kirchhof P, Loh P, Schulze-Bahr E, Johna R, Wichter T, et al. Brugada syndrome and supraventricular tachyarrhythmias: a novel association? J Cardiovasc Electrophysiol. 2001;12:680–5.

    CAS  PubMed  Google Scholar 

  137. Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116:1569–76.

    PubMed  Google Scholar 

  138. Lee CH, Liu PY, Lin LJ, Chen JH, Tsai LM. Clinical characteristics and outcomes of hypertrophic cardiomyopathy in Taiwan: a tertiary center experience. Clin Cardiol. 2007;30:177–82.

    PubMed  Google Scholar 

  139. Losi MA, Betocchi S, Aversa M, Lombardi R, Miranda M, et al. Determinants of atrial fibrillation development in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2004;94:895–900.

    PubMed  Google Scholar 

  140. Spitzer SG, Richter P, Knaut M, Schuler S. Treatment of atrial fibrillation in open heart surgery: the potential role of microwave energy. Thorac Cardiovasc Surg. 1999;47 Suppl 3:374–8.

    PubMed  Google Scholar 

  141. White CM, Giri S, Tsikouris JP, Dunn A, Felton K, Reddy P, Kluger J. A comparison of two individual amiodarone regimens to placebo in open heart surgery patients. Ann Thorac Surg. 2002;74:69–74.

    PubMed  Google Scholar 

  142. Almassi GH, Schowalter T, Nicolosi AC, Aggarwal A, Moritz TE, Henderson WG, et al. Atrial fibrillation after cardiac surgery: a major morbid event? Ann Surg. 1997;226:501–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Auer J, Weber T, Berent R, Ng CK, Lamm G, Eber B. Risk factors of postoperative atrial fibrillation after cardiac surgery. J Card Surg. 2005;20:425–31.

    PubMed  Google Scholar 

  144. Tsikouris JP, Kluger J, Song J, White CM. Changes in P-wave dispersion and P-wave duration after open heart surgery are associated with the peak incidence of atrial fibrillation. Heart Lung. 2001;30:466–71.

    CAS  PubMed  Google Scholar 

  145. Ishii Y, Schuessler RB, Gaynor SL, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation. 2005;111:2881–8.

    CAS  PubMed  Google Scholar 

  146. Baker WL, White CM, Kluger J, Denowitz A, Konecny CP, Coleman CI. Effect of perioperative corticosteroid use on the incidence of postcardiothoracic surgery atrial fibrillation and length of stay. Heart Rhythm. 2007;4:461–8.

    PubMed  Google Scholar 

  147. Halonen J, Halonen P, Jarvinen O, Taskinen P, Auvinen T, Tarkka M, et al. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA. 2007;297:1562–7.

    CAS  PubMed  Google Scholar 

  148. Kalman JM, Munawar M, Howes LG, Louis WJ, Buxton BF, Gutteridge G, Tonkin AM. Atrial fibrillation after coronary artery bypass grafting is associated with sympathetic activation. Ann Thorac Surg. 1995;60:1709–15.

    CAS  PubMed  Google Scholar 

  149. White HD, Antman EM, Glynn MA, Collins JJ, Cohn LH, Shemin RJ, Friedman PL. Efficacy and safety of timolol for prevention of supraventricular tachyarrhythmias after coronary artery bypass surgery. Circulation. 1984;70:479–84.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Arora MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Arora, R., Koduri, H.K. (2014). Mechanisms of Atrial Fibrillation. In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_31

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics