Skip to main content

Percutaneous Treatment in Lumbar Disc Herniation

  • Chapter
  • First Online:
Minimally Invasive Surgery of the Lumbar Spine

Abstract

The conventional surgical approach to disc herniation treatment may cause several complications (relapse, infection, CSF leakage, iatrogenic instability, peridural scar). In order to reduce the incidence rate of the above complications, in the last 30 years, many percutaneous procedures in lumbar disc herniation treatment have been used. All the percutaneous procedures are minimally invasive, and the main purpose is to respect as much as possible the anatomy of spine, reducing postoperative complications with a faster return to daily activities. The development of the percutaneous procedures was driven by the need to improve the efficacy of disc surgery and to reduce morbidity of the open surgical techniques. The goals included sufficient removal of disc material, minimal retraction of the nerve root, meticulous hemostasis, the possibility to approach concomitant pathologies, and the preservation of spinal stability. In addition, minimizing muscle dissection, decreasing postoperative pain, and avoiding general anesthesia in gender patients were other objectives. Today, virtual reality, robotic assistance, and CT-scan are already available to surgeons performing minimally invasive spinal surgery, in order to reduce both complications and recovery time of the surgical open approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith L. Enzyme dissolution of nucleus polposus in humans. JAMA. 1964;18:137–43.

    Article  Google Scholar 

  2. Williams RW. Microlumbar discectomy: a conservative surgical approach to the virgin herniated disc. Spine. 1978;3:175–82.

    Article  PubMed  CAS  Google Scholar 

  3. Hijikata S, et al. Percutaneous nucleotomy. A new treatment method for lumbar disc herniation. J Toden Hosp. 1975;5:5–13.

    Google Scholar 

  4. Onik G, Helms CA, Ginsburg L, et al. Percutaneous lumbar discectomy using a new aspiration probe. Am J Neuroradiol. 1985;6:290–6.

    Google Scholar 

  5. Friedman WA. Percutaneous discectomy. An alternative to chemonucleolysys. J Neurosurg. 1983;13:542–7.

    Article  CAS  Google Scholar 

  6. Sheppered J, James S, Leach B. Percutaneous disc surgery. Clin Orthop. 1989;238:43–8.

    Google Scholar 

  7. Asher PW. Application of the laser in neurosurgery. Lasers Surg Med. 1986;2:91–7.

    Google Scholar 

  8. Yonezawa T. Percutaneous nucleotomy: an anatomic study of the risk of root injury. Spine. 1990;15:1175–85.

    Article  PubMed  CAS  Google Scholar 

  9. Troussier B. Percutaneous intradiscal radio-frequency thermocoagulation. Spine. 1995;20:1713–8.

    Article  PubMed  CAS  Google Scholar 

  10. Smith L. Chemonucleolysis. Clin Orthop. 1969;67:72–80.

    PubMed  CAS  Google Scholar 

  11. Shah NH, Dastgir N, Gilmore MFX. Medium to long-term functional outcome of patients after chemonucleolysis. Acta Orthop Belg. 2003;69(4):346–9.

    PubMed  Google Scholar 

  12. Simmons JE, Nordby EJ, Hadjipavlou AG. Chemonucleolysys. The state of the art. Eur Spine J. 2001;10(3):192–202.

    Article  PubMed  CAS  Google Scholar 

  13. Onik G, Mooney V, Maroon JC, et al. Automated percutaneous discectomy: a prospective multi-institutional study. Neurosurgery. 1990;26:228–33.

    Article  PubMed  CAS  Google Scholar 

  14. Hijikata S, Yamagishi M, Nakayama T, et al. Percutaneous nucleotomy: a new treatment method for lumbar disc herniation. J Toden Hosp. 1975;5:39–42.

    Google Scholar 

  15. Dullerud R, et al. In: di Postacchini F, Percutaneous Treatments, Postacchini F, Mayer HM, editor. Lumbar disc herniation. New York: Springer Wien; 1999. p. 403–8.

    Google Scholar 

  16. Rezaian SM, Ghista DN. Percutaneous discectomy: technique, indications, and contraindications, 285 cases and results. J Neurol Orthop Med Surg. 1995;16:1–6.

    Google Scholar 

  17. Chatterjee S, Foy PM, Findlay GF. Report of a controlled clinical trial comparing automated percutaneous lumbar discectomy and microdiscectomy in the treatment of contained lumbar disc herniation. Spine. 1995;20(6):734–8.

    Article  PubMed  CAS  Google Scholar 

  18. Onik G, Mooney V, Helms C, et al. Automated percutaneous discectomy: a prospective multi-institutional study. Neurosurgery. 1990;28:226–32.

    Google Scholar 

  19. Hijikata S. Percutaneous nucleotomy. A new concept technique and 12 years’ experience. Clin Orthop Relat Res. 1989;238:9–23.

    PubMed  Google Scholar 

  20. Kambin PK. Posterolateral percutaneous lumbar discectomy and decompression: arthroscopic microdiscectomy. In: Kambin PK, editor. Arthroscopic microdiscectomy: minimal intervention in spinal surgery. Baltimore: Urban & Schwarzenberg; 1991. p. 67–100.

    Google Scholar 

  21. Yeung AT, Yeung CA. Advances in endoscopic disc and spine surgery: foraminal approach. Surg Technol Int. 2003;XI:253–61.

    Google Scholar 

  22. Mayer H, Brock M. Percutaneous endoscopic discectomy. Surgical technique and preliminary results compared to microsurgical discectomy. J Neurosurg. 1993;78:216–25.

    Article  PubMed  CAS  Google Scholar 

  23. Destandau J. A special device for endoscopic surgery of lumbar disc herniation. Neurol Res. 1999;21(1):39–42.

    PubMed  CAS  Google Scholar 

  24. Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain: a prospective outcome study with a minimum 2 year follow-up. Spine. 2002;27:966–74.

    Article  PubMed  Google Scholar 

  25. Bono CM, Iki K, Jalota A, et al. Temperatures within the lumbar disc and endplates during intradiscal electrothermal therapy: formulation of a predictive temperature map in relation to distance from the catheter. Spine. 2004;29:1124–31.

    Article  PubMed  Google Scholar 

  26. Singh V, Piryani C, Liao K, et al. Percutaneous disc decompression using coblation (nucleoplasty) in the treatment of chronic discogenic pain. Pain Physician. 2002;5:250–9.

    PubMed  Google Scholar 

  27. Sharps L, Isaac Z. Percutaneous disc decompression using nucleoplasty. Pain Physician. 2002;5:121–6.

    PubMed  Google Scholar 

  28. Asher PW. Perkutane Bandscheibengehandlung mit verschiedenen Lasern. In: Laser in medicine. Heidelberg: Springer; 1995. p. 165–9.

    Google Scholar 

  29. Danaila L, Pascu ML. Lasers in neurosurgery. Bucharest: Ed. Ac.Romane; 2001. p. 543–54.

    Google Scholar 

  30. Choy DSJ, Altman P. Fall of intradiscal pressure with laser ablation. Spine. 1993;7(1):23–9.

    Google Scholar 

  31. Case RBC, Choy DS, Altman P. Intervertebral disc pressure as a function of fluid volume infused. J Clin Laser Med Surg. 1985;13:143–7.

    Google Scholar 

  32. Choy DS, Ascher PW, Ranu HS, Alkaitis D, Leibler W, Altman P. Percutaneous laser disc decompression. A new therapeutic modality. Spine. 1993;18(7):939.

    Article  Google Scholar 

  33. Asher PW. Application of the laser in neurosurgery. Lasers Surg Med. 1986;2:291–7.

    Google Scholar 

  34. Turgut A. Effect of Nd:YAG laser on experimental disc degeneration, part 2. Histological and MRI findings. Acta Neurochir. 1996;138:1355–61.

    Article  PubMed  CAS  Google Scholar 

  35. Tonami H, Yokota H, Nakagawa T, et al. Percutaneous laser discectomy: MRI findings within the first 24 hours after treatment and their relationship to clinical outcome. Clin Radiol. 1997;52(12):938–44.

    Article  PubMed  CAS  Google Scholar 

  36. Yonezawa T, Onomura T, et al. The system and procedures of percutaneous intradiscal laser nucleotomy. Spine. 1990;15(11):1175–85.

    Article  PubMed  CAS  Google Scholar 

  37. Hellinger J. Introduce of diode laser (940 nm) PLDN. Mediziert 2000;335–58

    Google Scholar 

  38. Nakai S, Naga K, Maehara K, Nishimoto S. Experimental study using diode laser in discs the healing processes in discs and adjacent vertebrae after laser irradiation. Lasers Med Sci. 2003;18–19.

    Google Scholar 

  39. Menchetti PPM, Longo L, Canero G, et al. Diode laser effect on intervertebral disc. PL3D Rationale Laser Med Sci. 2005;20:S17.

    Google Scholar 

  40. Mayer HM, Scheetlick G. Komplikationen der perkutanen Bandscheibenchirurgie. Orthop Mitteilungen. 1993;1:23–33.

    Google Scholar 

  41. Hilbert J, Braun A, Papp J, et al. Erfahrungen mit der perkutanen Laserdiskus-dekompression beim lumbalen Bandscheibenschaden. Orthop. Praxis. 1995;31:217–21.

    Google Scholar 

  42. Schwartz AM, Brodkey JS. Bowel perforation following microsurgical lumbar discectomy. Spine. 1989;4:104–6.

    Article  Google Scholar 

  43. Hellinger J, Hellinger S. Complications of nonendoscopic percutaneous laser disc decompression and nucleotomy. J Min Inv Spinal Tech. 2002;2:66–9.

    Google Scholar 

  44. Siebert W. Percutaneous laser disc decompression: the European experience. Spine. 1993;7:103–33.

    Google Scholar 

  45. Choy DSJ. Percutaneous laser disc decompression (PLDD): 12 years’ experience with 752 procedures in 518 patients. J Clin Laser Med Surg. 1998;16:325–31.

    PubMed  CAS  Google Scholar 

  46. Messing–Jünger AM, Bock WJ. Lumbale Nerwenwurzel-kompression: Ein kooperatives Projekt zur Qualitätssicherung in der Neurochirurgie. Zentralbl Neurochir. 1995;56:19–26.

    PubMed  Google Scholar 

  47. Simons P, Lensker E, von Wild K. Percutaneous nucleus polposus denaturation in treatment of lumbar disc protrusion. Eur Spine J. 1994;3:219–21.

    Article  PubMed  CAS  Google Scholar 

  48. Grasshoff TH, Mahlfeld K, Kayser R. Komplikationen nach perkutanen Laser-Diskus Dekompression (PLDD) mit dem Nd:YAG Laser. Lasermedizin. 1998;14:3–7.

    Google Scholar 

  49. Wang W, Yu X, Cui J, Wu D, et al. The treatment of lumbar disc herniation through percutaneous hydrodiscectomy. Chinese J Pain Med. 2010;16(2)71–5.

    Google Scholar 

  50. Han HJ, Kim WK, Park CK, et al. Minimally invasive percutaneous hydrodiscectomy: preliminary report. Kor J Spine. 2009;6(3):187–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Maria Menchetti MD, FRCS (US) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Menchetti, P.P.M., Bini, W. (2014). Percutaneous Treatment in Lumbar Disc Herniation. In: Menchetti, P. (eds) Minimally Invasive Surgery of the Lumbar Spine. Springer, London. https://doi.org/10.1007/978-1-4471-5280-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5280-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5279-8

  • Online ISBN: 978-1-4471-5280-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics