Skip to main content

Evolution and Bio-Inspired Design: Natural Limitations

  • Chapter
  • First Online:
Biologically Inspired Design

Abstract

Biomimetics is the incorporation of novel structures and mechanisms from nature into the design and function of engineered systems. Promotion of biomimicry has been justified on the basis that evolution has modified structures and functions in organisms to achieve optimal solutions and maximize performance. Such justifications reflect an incomplete understanding of evolution and constraints imposed on biology. Evolution is not a conscious or predictive process and does not drive toward perfection. Organisms are not optimal with regard to any one specific function. Where a biological feature will out-perform available technologies, these features can be targeted for assimilation into bio-inspired designs. For engineers and entrepreneurial investors interested in a biomimetic approach, an understanding of evolution and the limitations and constraints that have shaped biological organisms are necessary to avoid unsupportable and overzealous claims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott IH, von Doenhoff AE (1959) Theory of wing sections. Dover, New York

    Google Scholar 

  • Alexander R McN (1983) Animal mechanics. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Alexander R McN (1988) Elastic mechanisms in animal movement. Cambridge University Press, Cambridge

    Google Scholar 

  • Alexander R McN (1998) Symmorphosis and safety factors. In: Weibel ER, Taylor CR, Bolis L (eds) Principles of animal design: the optimization and symmorphosis, Cambridge University Press, Cambridge, pp 28–35

    Google Scholar 

  • Alexander RMN, Goldspink G (1977) Mechanics and energetics of animal locomotion. Chapman & Hall, London

    Google Scholar 

  • Allen R (2010) Bulletproof feathers. University of Chicago Press, Chicago

    Google Scholar 

  • Armour RH, Vincent JFV (2006) Rolling in nature and robotics: a review. J Bionic Eng 3:195–208

    Article  Google Scholar 

  • Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764

    Article  Google Scholar 

  • Bandyopadhyay PR (2005) Trends in biorobotic autonomous undersea vehicles. IEEE J Ocean Eng 29:1–32

    Google Scholar 

  • Bar-Cohen Y (2006) Biomimetics: biologically inspired technology. CRC, Boca Raton

    Google Scholar 

  • Bar-Cohen Y (2012) Biomimetics: nature-based innovation. CRC, Boca Raton

    Google Scholar 

  • Barrett DS (2002) Optimization of swimming locomotion by genetic algorithm. In: Ayers J, Davis JL, Rudolph A (eds) Neurotechnology for biomimetic robots. MIT Press, Cambridge, pp 207–221

    Google Scholar 

  • Benyus JM (1997) Biomimicry: innovation inspired by nature. Perennial, New York

    Google Scholar 

  • Blaiszik BJ, Kramer SLB, Grady ME, McIlroy DA, Moore JS, Sottos NR, White SR (2012) Autonomic restoration of electrical conductivity. Adv Mater 24:398–401

    Article  Google Scholar 

  • Bonser RHC (2006) Patented biologically-inspired technological innovations: a twenty year view. J Bionic Eng 3:039–041

    Article  Google Scholar 

  • Bose N (1995) Performance of chordwise flexible oscillating propulsors using a time-domain panel method. Int Shipbuild Progr 42:281–294

    Google Scholar 

  • Bose N, Lien J (1989) Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer. Proc Roy Soc Lond B 237:175–200

    Article  Google Scholar 

  • Breder CM Jr (1926) The locomotion of fishes. Zoologica 4:159–297

    Google Scholar 

  • Breuker CJ, Debat V, Klingenber CP (2006) Functional evo-devo. Trends Ecol Evol 21:488–492

    Article  Google Scholar 

  • Brower TPL (2006) Design of a manta ray inspired underwater propulsive mechanism for long range, low power operation. Master’s thesis, Tufts University

    Google Scholar 

  • Cai Y, Bi S, Zheng L (2010) Design and experiments of a robotic fish imitating cow-nosed ray. J Bionic Eng 7:120–126

    Article  Google Scholar 

  • Colgate JE, Lynch KM (2004) Mechanics and control of swimming: a review. IEEE J Ocean Eng 29:660–673

    Article  Google Scholar 

  • Compagno LJV (1999) Systematics and body form. In: Hamlette WC (ed) Sharks, skates, and rays: the biology of elasmobranch fishes. The John Hopkins University Press, Baltimore, pp 1–42

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Deacon K, Last P, McCosker JE, Taylor L, Tricas TC, Walker TI (1997) Sharks and rays. Fog City Press, San Francisco

    Google Scholar 

  • Denny M, McFadzean A (2011) Engineering animals: how life works. Belknap Press, Cambridge

    Book  Google Scholar 

  • Diamond JM (1998) Evolution of biological safety factors: a cost/benefit analysis. In: Weibel ER, Taylor CR, Bolis L (eds) Principles of animal design: the optimization and symmorphosis. Cambridge University Press, Cambridge, pp 21–27

    Google Scholar 

  • Douady CJ, Dosay M, Shivji MS, Stanhope MJ (2003) Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Mol Phylogenet Evol 26:215–221

    Article  Google Scholar 

  • Festo M (2008) Fluidic muscle brochure. http://www/festo.com

  • Fish FE (1998) Imaginative solutions by marine organisms for drag reduction. In: Meng JCS (ed) Proceedings of the international symposium on seawater drag reduction, Newport, Rhode Island, pp 443–450

    Google Scholar 

  • Fish FE (2006) Limits of nature and advances of technology in marine systems: what does biomimetics have to offer to aquatic robots? Appl Bionics Biomech 3:49–60

    Article  Google Scholar 

  • Fish FE, Blood BR, Clark BD (1991) Hydrodynamics of the feet of fish-catching bats: influence of the water surface on drag and morphological design. J Exp Zool 258:164–173

    Article  Google Scholar 

  • Fish FE, Hui CA (1991) Dolphin swimming—a review. Mamm Rev 21:181–195

    Article  Google Scholar 

  • Fish FE, Lauder GV, Mittal R, Techet AH, Triantafyllou MS, Walker JA, Webb PW (2003) Conceptual design for the construction of a biorobotic AUV based on biological hydrodynamics. In: Proceedings of the 13th international symposium on unmanned untethered submersible technology. Autonomous Undersea Systems Institute, Durham New Hampshire

    Google Scholar 

  • Fish FE, Lauder GV (2006) Passive and active flow control by swimming fishes and mammals. Ann Rev Fluid Mech 38:193–224

    Article  MathSciNet  Google Scholar 

  • Fish FE, Smits AJ, Haj-Hariri H, Bart-Smith H, Iwasaki T (2012) Biomimetic swimmer inspired by the manta ray. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation. CRC, Boca Raton, pp 495–523

    Google Scholar 

  • Full R, Earls K, Wong M, Caldwell R (1993) Locomotion like a wheel? Nature 365:495

    Article  Google Scholar 

  • Gao J, Bi S, Xu Y, Liu C (2007) Development and design of a robotic manta ray featuring flexible pectoral fins. Robotics and Biomimetics, ROBIO 2007. IEEE International Conference, pp 19–523

    Google Scholar 

  • Gilbert SF (2003) The morphogenesis of evolutionary developmental biology. Int J Dev Biol 47:467–477

    Google Scholar 

  • Gordon LM, Joestner D (2011) Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469:194–197

    Article  Google Scholar 

  • Harris JS (1989) An airplane is not a bird. Invent Tech 5:18–22

    Google Scholar 

  • Heine C (1992) Mechanics of flapping fin locomotion in the cownose ray, Rhinoptera bonasus (Elasmobranchii: Myliobatidae). Ph.D. Dissertation, Duke University

    Google Scholar 

  • Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666

    Article  Google Scholar 

  • Jakab PL (1990) Visions of a flying machine. Smithsonian Institution Press, Washington

    Google Scholar 

  • Katz J, Weihs D (1978) Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J Fluid Mech 88:485–497

    Article  MATH  Google Scholar 

  • Katz J, Weihs D (1979) Large amplitude unsteady motion of a flexible slender propulsor. J Fluid Mech 90:713–723

    Article  MATH  Google Scholar 

  • Katz SL, Jordan CE (1997) A case for building integrated models of aquatic locomotion that couple internal and external forces. In: Tenth international symposium unmanned untethered submersible technology: proceedings of the special session on bio-engineering research related to autonomous underwater, Durham, NH, pp 135–152

    Google Scholar 

  • Klausewitz W (1964) Der lokomotionsmodus der Flugelrochen (Myliobatoidei) Zool Anz 173:111–120

    Google Scholar 

  • Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comp 4:87–112

    Google Scholar 

  • Kuratani S (2009) Modularity, comparative embryology and evo-devo: Developmental dissection of evolving body plans. Dev Biol 332:61–69

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Larrabee EE (1980) The screw propeller. Sci Am 243:134–148

    Google Scholar 

  • Lilienthal O (1911) Birdflight as the basis for aviation. Longmans, Green, London

    Google Scholar 

  • Liu P, Bose N (1993) Propulsive performance of three naturally occurring oscillating propeller planforms. Ocean Eng 20:57–75

    Article  Google Scholar 

  • Liu P, Bose N (1997) Propulsive performance from oscillating propulsors with spanwise flexibility. Proc R Soc A 453:1763–1770

    Article  Google Scholar 

  • Low KH (2011) Current and future trends of biologically inspired underwater vehicles. Def Sci Res Conf Expo. doi:10.1109/dsr.2011.6026887

    Google Scholar 

  • Lu Y (2004) Significance and progress of bionics. J Bionics Eng 1:1–3

    MATH  Google Scholar 

  • Luria SE, Gould SJ, Singer S (1981) A view of life. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Margulis L, Sagan D (1997) What is sex?. Simon and Schuster, New York

    Google Scholar 

  • Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Nat Acad Sci 100:3754–3759

    Article  Google Scholar 

  • Moored KW, Fish FE, Kemp TH, Bart-Smith H (2011a) Batoid fishes: inspiration for the next generation of underwater robots. Mar Tech Soc J 45:99–109

    Article  Google Scholar 

  • Moored KW, Dewy PA, Leftwich MC, Bart-Smith H, Smits AJ (2011b) Bioinspired propulsion mechanisms based on manta ray locomotion. Mar Tech Soc J 45:110–118

    Article  Google Scholar 

  • O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605

    Article  Google Scholar 

  • Parson JM, Fish FE, Nicastro AJ (2011) Turning performance of batoids: limitations of a rigid body. J Exp Mar Biol Ecol 402:12–18

    Article  Google Scholar 

  • Pennisi E (2011) Bio-inspired engineering: manta machines. Science 332:1028–1029

    Article  Google Scholar 

  • Petroski H (1992) The evolution of useful things. Alfred A Knapf, New York

    Google Scholar 

  • Petroski H (1996) Invention by design. Harvard University Press, Cambridge

    Google Scholar 

  • Prempraneerach P, Hover FS, Triantafyllou MS (2003) The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In: Proceedings of the Thirteenth international symposium on unmanned untethered submersible technology: proceedings of the special session on bio-engineering research related to autonomous underwater vehicles, Lee, New Hampshire, Autonomous Undersea Systems Institute

    Google Scholar 

  • Ralston E, Swain G (2009) Bioinspiration-the solution for biofouling control? Bioinsp Biomim 4:015007. doi:10.1088/1748-3182/4/1/015007

    Article  Google Scholar 

  • Rohr JJ, Fish FE (2004) Strouhal numbers and optimization of swimming by odontocete cetaceans. J Exp Biol 207:1633–1642

    Article  Google Scholar 

  • Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes—undulation versus oscillation. J Exp Biol 204:379–394

    Google Scholar 

  • Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns. J Morph 264:298–313

    Article  Google Scholar 

  • Suzumori K, Endo S, Kanda T, Kato N, Suzuki HA (2007) A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Robotics and Automation, IEEE International Conference on 2007, pp 4975–4980

    Google Scholar 

  • Takagi K, Yamamura M, Luo Z, Onishi M, Hirano S, Asaka K, Hayakawa Y (2006) Development of a rajiform swimming robot using ionic polymer artificial muscles. In: Intelligent Robots and Systems, IEEE/RSJ International Conference, pp 1861–1866

    Google Scholar 

  • Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224

    Article  Google Scholar 

  • Triantafyllou GS, Triantafyllou MS (1995) An efficient swimming machine. Sci Am 272:64–70

    Article  Google Scholar 

  • Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fishlike swimming. Ann Rev Fluid Mech 32:33–53

    Article  MathSciNet  Google Scholar 

  • Ummat A, Dubey A, Mavroidis C (2006) Bio-nanorobotics: a field inspired by nature. In: Bar-Cohen Y (ed) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton, pp 201–227

    Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Vincent J (1990) Structural biomaterials. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (1988) Life’s devices. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (1998) Cat’s paws and catapults. W. W. Norton, New York

    Google Scholar 

  • Wainwright SA (1988) Axis and circumference: the cylindrical shape of plants and animals. Harvard University Press, Cambridge

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Princeton University Press, Princeton

    Google Scholar 

  • Webb PW (1975) Hydrodynamics and energetics of fish propulsion. Bull Fish Res Bd Can 190:1–158

    Google Scholar 

  • Webb PW (1997) Designs for stability and maneuverability in aquatic vertebrates: What can we learn. In: Tenth international symposium unmanned untethered submersible technology: proceedings of the species on bio-engineering research related to autonomous underwater vehicles, Durham, NH, pp. 85-108

    Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comp 4:65–85

    Google Scholar 

  • Yang S, Qiu J, Han X (2009) Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish. J Bionic Eng 6:174–179

    Article  Google Scholar 

  • Zhang S, Yokoi H, Zhao X (2006) Molecular design of biological and nano-materials. In: Bar-Cohen Y (ed) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton, pp 229–242

    Google Scholar 

  • Zhou C, Low K (2010) Better endurance and load capacity: an improved design of manta ray robot (RoMan-II). J Bionic Eng 7:S137–S144

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Anthony Nicastro and Janet Fontanella for their comments on the manuscript. We also great appreciate the cooperation of Drs. Hilary Bart-Smith, Keith Moored, Hossein Haj-Hariri, Tetsuya Iwasaki, and Alexander Smits on the robotic manta project. This chapter is based in part on research performed with support from the Office of Naval Research grant no. N000140810642 to FEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Fish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fish, F.E., Beneski, J.T. (2014). Evolution and Bio-Inspired Design: Natural Limitations. In: Goel, A., McAdams, D., Stone, R. (eds) Biologically Inspired Design. Springer, London. https://doi.org/10.1007/978-1-4471-5248-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5248-4_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5247-7

  • Online ISBN: 978-1-4471-5248-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics