Skip to main content

Brain Death and Management of the Potential Organ Donor

  • Chapter
  • First Online:
Textbook of Neurointensive Care

Abstract

A structured and standardized approach to the diagnosis of brain death is essential to ensure that patients are appropriately classified. This involves a physical exam to establish coma and exclude reversible causes of coma, a comprehensive evaluation of the cranial nerves, and an apnea test. The inability to perform any of the physical exam elements necessitates the use of confirmatory studies. Management of the potential organ donor commences after the diagnosis of brain death is established. Donation after cardiac death should be considered in patients whose prognosis is futile and in whom care is to be withdrawn. Specific donor management goals have been established and have been associated with greater organ procurement. Hemodynamic management forms the cornerstone of brain-dead donor management. Echocardiography should be performed in all potential donors to evaluate cardiac function. Fluid resuscitation is frequently necessary as potential donors tend to be intravascularly volume depleted. Vasopressors should be used to support acceptable blood pressure and hemodynamic profiles. Donor lung management should utilize a lung protective strategy with ventilatory manipulations undertaken to ensure adequate systemic oxygenation and lung expansion. A coordinated donor management approach utilizing intensivists and OPO coordinators has been shown to more effectively manage the donation process, resulting in more organs procured and transplanted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cushing H. Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci. 1901;124:375.

    Article  Google Scholar 

  2. Power BM, Van Heerden PV. The physiological changes associated with brain death – current concepts and implications for treatment of the brain dead organ donor. Anaesth Intensive Care. 1995;23:26–36.

    PubMed  CAS  Google Scholar 

  3. Kopelnik A, Zaroff JG. Neurocardiogenic injury in neurovascular disorders. Crit Care Clin. 2006;22:733–52.

    Article  PubMed  Google Scholar 

  4. Banki NM, Zaroff JG. Neurogenic cardiac injury. Curr Treat Options Cardiovasc Med. 2003;5:451–8.

    Article  PubMed  Google Scholar 

  5. Banki NM, Kopelnik A, Dae MW, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112:3314–9.

    Article  PubMed  Google Scholar 

  6. Tung P, Kopelnik A, Banki N, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35:548–51.

    Article  PubMed  Google Scholar 

  7. Banki NM, Parmley WW, Foster E, Gress D, Lawton MT. Reversibility of left ventricular systolic dysfunction in humans with subarachnoid hemorrhage. Circulation. 2001;104:11 (Abstracted).

    Google Scholar 

  8. Powner DJ, Boccalandro C, Alp MS, Vollmer DG. Endocrine failure after traumatic brain injury in adults. Neurocrit Care. 2006;5:61–70.

    Article  PubMed  Google Scholar 

  9. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, Stalla GK, Agha A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA. 2007;298:1429–38.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshioka T, Sugimoto H, Uenishi M, et al. Prolonged hemodynamic maintenance by the combined administration of vasopressin and epinephrine in brain death: a clinical study. Neurosurgery. 1986;18:565–7.

    Article  PubMed  CAS  Google Scholar 

  11. Black PM. Brain death (first of two parts). N Engl J Med. 1978;299:338–44.

    Article  PubMed  CAS  Google Scholar 

  12. Novitzky D. Donor management: state of the art. Transplant Proc. 1997;29:3773–5.

    Article  PubMed  CAS  Google Scholar 

  13. Novitzky D, Cooper DK, Chaffin JS, Greer AE, DeBault LE, Zuhdi N. Improved cardiac allograft function following triiodothyronine therapy to both donor and recipient. Transplantation. 1990;49:311–6.

    Article  PubMed  CAS  Google Scholar 

  14. Novitzky D, Cooper DK, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation. 1988;45:32–6.

    Article  PubMed  CAS  Google Scholar 

  15. Novitzky D, Cooper DK, Reichart B. Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors. Transplantation. 1987;43:852–4.

    PubMed  CAS  Google Scholar 

  16. Novitzky D, Wicomb WN, Rose AG, Cooper DK, Reichart B. Pathophysiology of pulmonary edema following experimental brain death in the chacma baboon. Ann Thorac Surg. 1987;43:288–94.

    Article  PubMed  CAS  Google Scholar 

  17. Novitzky D, Wicomb W, Cooper D, Rose AG. Electrocardiographic, hemodynamic and endocrine changes occurring during experimental brain death in the chacma baboon. J Heart Transplant. 1984;IV:63–9.

    Google Scholar 

  18. Szabo G, Buhmann V, Bahrle S, Vahl CF, Hagl S. Brain death impairs coronary endothelial function. Transplantation. 2002;73:1846–8.

    Article  PubMed  CAS  Google Scholar 

  19. Segel LD, VonHaag DW, Zhang J, Follette DM. Selective overexpression of inflammatory molecules in hearts from brain-dead rats. J Heart Lung Transplant. 2002;21:804–11.

    Article  PubMed  Google Scholar 

  20. Szabo G, Hackert T, Buhmann V, et al. Downregulation of myocardial contractility via intact ventriculo – arterial coupling in the brain dead organ donor. Eur J Cardiothorac Surg. 2001;20:170–6.

    Article  PubMed  CAS  Google Scholar 

  21. Szabo G, Hackert T, Buhmann V, Sebening C, Vahl CF, Hagl S. Myocardial performance after brain death: studies in isolated hearts. Ann Transplant. 2000;5:45–50.

    PubMed  CAS  Google Scholar 

  22. Yeh Jr T, Wechsler AS, Graham LJ, et al. Acute brain death alters left ventricular myocardial gene expression. J Thorac Cardiovasc Surg. 1999;117:365–74.

    Article  PubMed  Google Scholar 

  23. Bittner HB, Chen EP, Milano CA, et al. Myocardial beta-adrenergic receptor function and high-energy phosphates in brain death – related cardiac dysfunction. Circulation. 1995;92:472–8.

    Article  CAS  Google Scholar 

  24. D’Amico TA, Meyers CH, Koutlas TC, et al. Desensitization of myocardial beta-adrenergic receptors and deterioration of left ventricular function after brain death. J Thorac Cardiovasc Surg. 1995;110:746–51.

    Article  PubMed  Google Scholar 

  25. Shivalkar B, Van Loon J, Wieland W, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation. 1993;87:230–9.

    Article  PubMed  CAS  Google Scholar 

  26. Mehra MR, Uber PA, Ventura HO, Scott RL, Park MH. The impact of mode of donor brain death on cardiac allograft vasculopathy: an intravascular ultrasound study. J Am Coll Cardiol. 2004;43:806–10.

    Article  PubMed  Google Scholar 

  27. Audibert G, Charpentier C, Seguin-Devaux C, et al. Improvement of donor myocardial function after treatment of autonomic storm during brain death. Transplantation. 2006;82:1031–6.

    Article  PubMed  CAS  Google Scholar 

  28. Cooper DK, Novitzky D, Wicomb WN. The pathophysiological effects of brain death on potential donor organs, with particular reference to the heart. Ann R Coll Surg Engl. 1989;71:261–6.

    PubMed  CAS  Google Scholar 

  29. Gramm HJ, Meinhold H, Bickel U, et al. Acute endocrine failure after brain death? Transplantation. 1992;54:851–7.

    Article  PubMed  CAS  Google Scholar 

  30. Howlett TA, Keogh AM, Perry L, Touzel R, Rees LH. Anterior and posterior pituitary function in brain-stem-dead donors. A possible role for hormonal replacement therapy. Transplantation. 1989;47:828–34.

    Article  PubMed  CAS  Google Scholar 

  31. Powner DJ, Hendrich A, Lagler RG, Ng RH, Madden RL. Hormonal changes in brain dead patients. Crit Care Med. 1990;18:702–8.

    Article  PubMed  CAS  Google Scholar 

  32. Goarin JP, Cohen S, Riou B, et al. The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Anesth Analg. 1996;83:41–7.

    PubMed  CAS  Google Scholar 

  33. Randell TT, Hockerstedt KA. Triiodothyronine treatment in brain-dead multiorgan donors – a controlled study. Transplantation. 1992;54:736–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gasser M. Organ transplantation from brain dead donors: its impact on short and long term outcome revisited. Transplant Rev. 2001;15:1–10.

    Article  Google Scholar 

  35. Pratschke J, Wilhelm MJ, Kusaka M, et al. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation. 1999;67:343–8.

    Article  PubMed  CAS  Google Scholar 

  36. Murugan R, Venkataraman R, Wahed AS, et al. Increased plasma interleukin-6 in donors is associated with lower recipient hospital-free survival after cadaveric organ transplantation. Crit Care Med. 2008;36:1810–6.

    Article  PubMed  CAS  Google Scholar 

  37. Murugan R, Venkataraman R, Wahed AS, et al. Preload responsiveness is associated with increased interleukin-6 and lower organ yield from brain-dead donors. Crit Care Med. 2009;37:2387–93.

    Article  PubMed  CAS  Google Scholar 

  38. Birks EJ, Burton PB, Owen V, et al. Elevated tumor necrosis factor-alpha and interleukin-6 in myocardium and serum of malfunctioning donor hearts. Circulation. 2000;102:352–8.

    Google Scholar 

  39. Venkateswaran RV, Dronavalli V, Lambert PA, et al. The proinflammatory environment in potential heart and lung donors: prevalence and impact of donor management and hormonal therapy. Transplantation. 2009;88:582–8.

    Article  PubMed  CAS  Google Scholar 

  40. Weiss S, Kotsch K, Francuski M, et al. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am J Transplant. 2007;7:1584–93.

    Article  PubMed  CAS  Google Scholar 

  41. Kotsch K, Ulrich F, Reutzel-Selke A, et al. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial. Ann Surg. 2008;248:1042–50.

    Article  PubMed  Google Scholar 

  42. Mollaret P, Goulon M. The depassed coma (preliminary memoir). Rev Neurol (Paris). 1959;101:3–15.

    CAS  Google Scholar 

  43. Lofstedt S. Intracranial lesions with abolished passage of x-ray contrast throughout the internal carotid arteries. Pacing Clin Electrophysiol. 1956;8:99.

    Google Scholar 

  44. Schwab R. EEG as an aid in determining death in the presence of cardiac acuity. Electroencephalogr Clin Neurophysiol. 1963;15:147.

    Google Scholar 

  45. A definition of irreversible coma. Report of the Ad Hoc Committee of the Harvard Medical School to examine the definition of brain death. JAMA. 1968;205:337–40.

    Google Scholar 

  46. Diagnosis of brain death. Statement issued by the honorary secretary of the Conference of Medical Royal Colleges and their Faculties in the United Kingdom on 11 October 1976. Br Med J. 1976;2:1187–8.

    Google Scholar 

  47. Criteria for the diagnosis of brain stem death. Review by a working group convened by the Royal College of Physicians and endorsed by the Conference of Medical Royal Colleges and their Faculties in the United Kingdom. J R Coll Physicians Lond. 1995;29:381–2.

    Google Scholar 

  48. Practice parameters for determining brain death in adults (summary statement). The Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 1995;45:1012–4.

    Google Scholar 

  49. An appraisal of the criteria of cerebral death. A summary statement. A collaborative study. JAMA. 1977;237:982–6.

    Google Scholar 

  50. Wijdicks EF, Varelas PN, Gronseth GS, Greer DM. American Academy of N. Evidence-based guideline update: determining brain death in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010;74:1911–8.

    Article  PubMed  Google Scholar 

  51. Wijdicks EF. Clinical diagnosis and confirmatory testing of brain death in adults. In: Brain death. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 61–90.

    Google Scholar 

  52. Lutz-Dettinger N, de Jaeger A, Kerremans I. Care of the potential pediatric organ donor. Pediatr Clin North Am. 2001;48:715–49.

    Article  PubMed  CAS  Google Scholar 

  53. Lopez-Navidad A, Domingo P, Caballero F, Gonzalez C, Santiago C. Successful transplantation of organs retrieved from donors with bacterial meningitis. Transplantation. 1997;64:365–8.

    Article  PubMed  CAS  Google Scholar 

  54. Bahrami T, Vohra HA, Shaikhrezai K, et al. Intrathoracic organ transplantation from donors with meningitis: a single-center 20-year experience. Ann Thorac Surg. 2008;86:1554–6.

    Article  PubMed  Google Scholar 

  55. Satoi S, Bramhall SR, Solomon M, et al. The use of liver grafts from donors with bacterial meningitis. Transplantation. 2001;72:1108–13.

    Article  PubMed  CAS  Google Scholar 

  56. Kubak BM, Gregson AL, Pegues DA, et al. Use of hearts transplanted from donors with severe sepsis and infectious deaths. J Heart Lung Transplant. 2009;28:260–5.

    Article  PubMed  Google Scholar 

  57. Cohen J, Michowiz R, Ashkenazi T, Pitlik S, Singer P. Successful organ transplantation from donors with Acinetobacter baumannii septic shock. Transplantation. 2006;81:853–5.

    Article  PubMed  Google Scholar 

  58. Williams MA, Lipsett PA, Rushton CH, Grochowski EC, Berkowitz ID, Mann SL, Shatzer JH, Short MP, Genel M, Council on Scientific Affairs, American Medical Association. The physician’s role in discussing organ donation with families. Crit Care Med. 2003;31:1568–73.

    Article  PubMed  Google Scholar 

  59. DeJong W, Franz HG, Wolfe SM, et al. Requesting organ donation: an interview study of donor and nondonor families. Am J Crit Care. 1998;7:13–23.

    PubMed  CAS  Google Scholar 

  60. Siminoff LA, Gordon N, Hewlett J, Arnold RM. Factors influencing families’ consent for donation of solid organs for transplantation. JAMA. 2001;286:71–7.

    Article  PubMed  CAS  Google Scholar 

  61. Childress JF, Liverman CT. Organ donation. Washington DC: The National Academies Press; 2006.

    Google Scholar 

  62. Gortmaker SL, Beasley CL, Sheehy E, et al. Improving the request process to increase family consent for organ donation. J Transpl Coord. 1998;8:210–7.

    PubMed  CAS  Google Scholar 

  63. Garrison RN, Bentley FR, Raque GH, et al. There is an answer to the shortage of organ donors. Surg Gynecol Obstet. 1991;173:391–6.

    PubMed  CAS  Google Scholar 

  64. Siminoff LA, Lawrence RH, Zhang A. Decoupling: what is it and does it really help increase consent to organ donation? Prog Transplant. 2002;12:52–60.

    PubMed  Google Scholar 

  65. Rosendale JD, Chabalewski FL, McBride MA, et al. Increased transplanted organs from the use of a standardized donor management protocol. Am J Transplant. 2002;2:761–8.

    Article  PubMed  Google Scholar 

  66. Salim A, Velmahos GC, Brown C, Belzberg H, Demetriades D. Aggressive organ donor management significantly increases the number of organs available for transplantation. J Trauma. 2005;58:991–4.

    Article  PubMed  Google Scholar 

  67. Salim A, Martin M, Brown C, Rhee P, Demetriades D, Belzberg H. The effect of a protocol of aggressive donor management: implications for the national organ donor shortage. J Trauma. 2006;61:429–33.

    Article  PubMed  Google Scholar 

  68. Inaba K, Branco BC, Lam L, et al. Organ donation and time to procurement: late is not too late. J Trauma. 2010;68:1362–6.

    Article  PubMed  Google Scholar 

  69. Christmas AB, Bogart TA, Etson KE, et al. The reward is worth the wait: a prospective analysis of 100 consecutive organ donors. Am Surg. 2012;78:296–9.

    PubMed  Google Scholar 

  70. Hagan ME, McClean D, Falcone CA, Arrington J, Matthews D, Summe C. Attaining specific donor management goals increases number of organs transplanted per donor: a quality improvement project. Prog Transplant. 2009;19:227–31.

    PubMed  Google Scholar 

  71. Franklin GA, Santos AP, Smith JW, Galbraith S, Harbrecht BG, Garrison RN. Optimization of donor management goals yields increased organ use. Am Surg. 2010;76:587–94.

    PubMed  Google Scholar 

  72. Malinoski DJ, Daly MC, Patel MS, Oley-Graybill C, Foster 3rd CE, Salim A. Achieving donor management goals before deceased donor procurement is associated with more organs transplanted per donor. J Trauma. 2011;71:990–5.

    Article  PubMed  Google Scholar 

  73. Venkateswaran RV, Patchell VB, Wilson IC, et al. Early donor management increases the retrieval rate of lungs for transplantation. Ann Thorac Surg. 2008;85:278–86.

    Article  PubMed  Google Scholar 

  74. Venkateswaran RV, Steeds RP, Quinn DW, et al. The haemodynamic effects of adjunctive hormone therapy in potential heart donors: a prospective randomized double-blind factorially designed controlled trial. Eur Heart J. 2009;30:1771–80.

    Article  PubMed  CAS  Google Scholar 

  75. Gilbert EM, Krueger SK, Murray JL, et al. Echocardiographic evaluation of potential cardiac transplant donors. J Thorac Cardiovasc Surg. 1988;95:1003–7.

    PubMed  CAS  Google Scholar 

  76. Zaroff JG, Babcock WD, Shiboski SC. The impact of left ventricular dysfunction on cardiac donor transplant rates. J Heart Lung Transplant. 2003;22:334–7.

    Article  PubMed  Google Scholar 

  77. Zaroff J. Echocardiographic evaluation of the potential cardiac donor. J Heart Lung Transplant. 2004;23:S250–2.

    Article  PubMed  Google Scholar 

  78. Zaroff JG, Babcock WD, Shiboski SC, Solinger LL, Rosengard BR. Temporal changes in left ventricular systolic function in heart donors: results of serial echocardiography. J Heart Lung Transplant. 2003;22:383–8.

    Article  PubMed  Google Scholar 

  79. Stoddard MF, Longaker RA. The role of transesophageal echocardiography in cardiac donor screening. Am Heart J. 1993;125:1676–81.

    Article  PubMed  CAS  Google Scholar 

  80. Venkateswaran RV, Townend JN, Wilson IC, Mascaro JG, Bonser RS, Steeds RP. Echocardiography in the potential heart donor. Transplantation. 2010;89:894–901.

    Article  PubMed  Google Scholar 

  81. Kouo T, Nishina T, Morita H, et al. Usefulness of low dose dobutamine stress echocardiography for evaluating reversibility of brain death-induced myocardial dysfunction. Am J Cardiol. 1999;84:558–82.

    Article  Google Scholar 

  82. Wheeldon DR, Potter CD, Oduro A, Wallwork J, Large SR. Transforming the “unacceptable” donor: outcomes from the adoption of a standardized donor management technique. J Heart Lung Transplant. 1995;14:734–42.

    PubMed  CAS  Google Scholar 

  83. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  84. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  85. Whelchel J, Diethelm A, Phillips M. The effect of high dose dopamine in cadaveric donor management in delayed graft function and graft survival following renal transplant. Transplant Proc. 1986;18:523–7.

    Google Scholar 

  86. Totsuka E, Dodson F, Urakami A, et al. Influence of high donor serum sodium levels on early postoperative graft function in human liver transplantation: effect of correction of donor hypernatremia. Liver Transpl Surg. 1999;5:421–8.

    Article  PubMed  CAS  Google Scholar 

  87. Follette D, Rudich S, Bonacci C, Allen R, Hoso A, Albertson T. Importance of an aggressive multidisciplinary management approach to optimize lung donor procurement. Transplant Proc. 1999;31:169–70.

    Article  PubMed  CAS  Google Scholar 

  88. Reilly P, Morgan L, Grossman MD, et al. Lung procurement from solid organ donors – role of fluid resuscitation in procurement failures. Internet J Emerg Intensive Care Med [serial online]. 1999;3(2): http://www.ispub.com/journals/IJEICM/VOl3N2/organ.htm.

  89. Lucas BA, Vaughn WK, Spees EK, Sanfilippo F. Identification of donor factors predisposing to high discard rates of cadaver kidneys and increased graft loss within one year posttransplantation – SEOPF 1977–1982. South-Eastern Organ Procurement Foundation. Transplantation. 1987;43:253–8.

    Article  PubMed  CAS  Google Scholar 

  90. Abdelnour T, Rieke S. Relationship of hormonal resuscitation therapy and central venous pressure on increasing organs for transplant. J Heart Lung Transplant. 2009;28:480–5.

    Article  PubMed  Google Scholar 

  91. Minambres E, Rodrigo E, Ballesteros MA, et al. Impact of restrictive fluid balance focused to increase lung procurement on renal function after kidney transplantation. Nephrol Dial Transplant. 2010;25:2352–6.

    Article  PubMed  Google Scholar 

  92. Shemie SD, Ross H, Pagliarello J, et al. Organ donor management in Canada: recommendations of the forum on Medical Management to Optimize Donor Organ Potential. CMAJ. 2006;174:S13–32.

    Article  PubMed  Google Scholar 

  93. Schnuelle P, Lorenz D, Mueller A, Trede M, Van Der Woude FJ. Donor catecholamine use reduces acute allograft rejection and improves graft survival after cadaveric renal transplantation. Kidney Int. 1999;56:738–46.

    Article  PubMed  CAS  Google Scholar 

  94. Schnuelle P, Berger S, de Boer J, Persijn G, van der Woude FJ. Effects of catecholamine application to brain-dead donors on graft survival in solid organ transplantation. Transplantation. 2001;72:455–63.

    Article  PubMed  CAS  Google Scholar 

  95. Schnuelle P, Gottmann U, Hoeger S, et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA. 2009;302:1067–75.

    Article  PubMed  CAS  Google Scholar 

  96. Benck U, Hoeger S, Brinkkoetter PT, et al. Effects of donor pre-treatment with dopamine on survival after heart transplantation: a cohort study of heart transplant recipients nested in a randomized controlled multicenter trial. J Am Coll Cardiol. 2011;58:1768–77.

    Article  PubMed  CAS  Google Scholar 

  97. Rosendale JD, Kauffman HM, McBride MA, et al. Aggressive pharmacologic donor management results in more transplanted organs. Transplantation. 2003;75:482–7.

    Article  PubMed  Google Scholar 

  98. Powner DJ, Hernandez M. A review of thyroid hormone administration during adult donor care. Prog Transplant. 2005;15:2002–7.

    Google Scholar 

  99. Fisher AJ, Donnelly SC, Hirani N, et al. Enhanced pulmonary inflammation in organ donors following fatal non-traumatic brain injury. Lancet. 1999;353:1412–3.

    Article  PubMed  CAS  Google Scholar 

  100. Fisher A, Donnelly SC, Mirani N, et al. Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med. 2001;163:259–65.

    Article  PubMed  CAS  Google Scholar 

  101. Avlonitis VS, Wigfield CH, Golledge HD, Kirby JA, Dark JH. Early hemodynamic injury during donor brain death determines the severity of primary graft dysfunction after lung transplantation. Am J Transplant. 2007;7:83–90.

    Article  PubMed  CAS  Google Scholar 

  102. Avlonitis VS, Wigfield CH, Kirby JA, Dark JH. The hemodynamic mechanisms of lung injury and systemic inflammatory response following brain death in the transplant donor. Am J Transplant. 2005;5:684–93.

    Article  PubMed  Google Scholar 

  103. Finfer S, Bohn D, Colpitts D, Cox P, Fleming F, Barker G. Intensive care management of paediatric organ donors and its effect on post-transplant organ function. Intensive Care Med. 1996;22:1424–32.

    Article  PubMed  CAS  Google Scholar 

  104. Ware LB, Wang Y, Fang X, et al. Assessment of lungs rejected for transplantation and implications for donor selection. Lancet. 2002;360:619–20.

    Article  PubMed  Google Scholar 

  105. Fisher AJ, Donnelly SC, Pritchard G, Dark JH, Corris PA. Objective assessment of criteria for selection of donor lungs suitable for transplantation. Thorax. 2004;59:434–7.

    Article  PubMed  CAS  Google Scholar 

  106. Gabbay E, Williams TJ, Griffiths AP, et al. Maximizing the utilization of donor organs offered for lung transplantation. Am J Respir Crit Care Med. 1999;160:265–71.

    Article  PubMed  CAS  Google Scholar 

  107. Angel LF, Levine DJ, Restrepo MI, et al. Impact of a lung transplantation donor-management protocol on lung donation and recipient outcomes. Am J Respir Crit Care Med. 2006;174:710–6.

    Article  PubMed  Google Scholar 

  108. Mascia L, Pasero D, Slutsky AS, et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial. JAMA. 2010;304:2620–7.

    Article  PubMed  CAS  Google Scholar 

  109. Singer P, Cohen J, Cynober L. Effect of nutritional state of brain-dead organ donor on transplantation. Nutrition. 2001;17:948–52.

    Article  PubMed  CAS  Google Scholar 

  110. Herdman R, Potts J. Non-heart beating organ transplantation: Medical and ethical issues in procurement. Institute of Medicine, National Academy of Sciences. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  111. Institute of Medicine. Non-heart beating organ transplantation: Practice and Protocols. Institute of Medicine, National Academy of Sciences. Washington, DC: National Academy Press; 2000.

    Google Scholar 

  112. Ethics Committee, American College of Critical Care Medicine, Society of Critical Care Medicine. Recommendations for non-heartbeating organ donation – a position paper by the Ethics Committee, American College of Critical Care Medicine, Society of Critical Care Medicine. Crit Care Med. 2001;29:1826–31.

    Article  Google Scholar 

  113. Wood KE, Becker B, McCarney J, et al. Care of the potential organ donor. N Engl J Med. 2004;351:2730–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Wood DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wood, K.E., Layon, A.J. (2013). Brain Death and Management of the Potential Organ Donor. In: Layon, A., Gabrielli, A., Friedman, W. (eds) Textbook of Neurointensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-5226-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5226-2_44

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5225-5

  • Online ISBN: 978-1-4471-5226-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics