Skip to main content

Heart Rate, Synchrony and Arterial Hemodynamics

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

Heart rate is a conventional index quantifying the pulsatile action of the heart and is a basic parameter used throughout medical history and practice. However, modern science often places relatively little emphasis on heart rate in relation to the oscillatory nature of blood flow in the circulatory system, and the unyielding cyclic stress on the heart and blood vessels. Heart rate is relevant not only as an elemental measure, but also as a statistical entity and a possible confounding factor when considering its interaction with vascular hemodynamics. Pulse pressure amplification from the central aorta to peripheral arteries increases with heart rate. This has significant implications when assessing vascular function based on peripheral (brachial) pressure measurements, as the pressure changes at the central aorta with changes in arterial stiffness (as occurs with age) can be markedly different from changes at the peripheral site at different heart rates. Similarly, heart rate is a significant parameter when assessing cardiac and vascular implications of anti-hypertensive drug treatments. Heart rate, itself an independent parameter of cardiovascular risk, should also be considered in the statistical treatment of cardiovascular risk factors in large epidemiological studies. Disturbance in the regular pulsatile action of the heart due to altered synchrony of the cardiac chambers leads to heart failure, which can be treated with resychronization therapy. Cardiovascular models show that arterial stiffness can significantly affect the modification of parameters associated with cardiac resynchronization therapy. Thus, pulsatile hemodynamic parameters play a significant role when associated with both regular heart rate and with disturbed synchrony of the contracting heart chambers affecting the pump function of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westerhof N, Elzinga G. Normalized input impedance and arterial decay time over heart period are independent of animal size. Am J Physiol. 1991;261:R126–33.

    CAS  PubMed  Google Scholar 

  2. Westerhof N, Elzinga G. Why smaller animals have higher heart rates. Adv Exp Med Biol. 1993;346:319–23.

    Article  CAS  PubMed  Google Scholar 

  3. Milnor WR. Haemodynamics. 2nd ed. Baltimore: Williams and Wilkinson; 1989.

    Google Scholar 

  4. Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles, 6th ed. New York: Oxford University Press; 2011.

    Google Scholar 

  5. Chemla D, Hebert JL, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.

    CAS  PubMed  Google Scholar 

  6. Avolio AP, O’Rourke MF, Mang K, et al. A comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs. Am J Physiol. 1976;230:868–75.

    CAS  PubMed  Google Scholar 

  7. Milnor WR. Aortic wavelength as a determinant of the relation between heart rate and body size in mammals. Am J Physiol. 1979;237:R3–6.

    CAS  PubMed  Google Scholar 

  8. Iberal AS. Some comparative scale factors for mammals: comments on Milnor’s paper concerning a feature of cardiovascular design. Am J Physiol. 1979;237:R7–9.

    Google Scholar 

  9. O’Rourke MF. Aortic wavelength as a determinant of the relationship between heart rate and body size in mammals. Am J Physiol. 1981;240:R393–5.

    PubMed  Google Scholar 

  10. Taylor MG. The elastic properties of arteries in relation to the physiological functions of the arterial system. Gastroenterology. 1967;52:358–63.

    CAS  PubMed  Google Scholar 

  11. Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary process. Circ Res. 1991;68:1495–500.

    Article  CAS  PubMed  Google Scholar 

  12. Yin FC. Ventricular/vascular coupling: clinical, physiological and engineering aspects. London: Springer; 1987.

    Book  Google Scholar 

  13. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35:117–26.

    Article  CAS  PubMed  Google Scholar 

  14. Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12:163–89.

    Article  CAS  PubMed  Google Scholar 

  15. Weissler AM, Peeler RG, Roehll Jr WH. Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am Heart J. 1961;62:367–78.

    Article  CAS  PubMed  Google Scholar 

  16. O’Rourke MF. Arterial function in health and disease. Edinburgh: Churchill Livingstone; 1982.

    Google Scholar 

  17. Albaladejo P, Copie X, Boutouyrie P, et al. Heart rate, arterial stiffness, and wave reflections in paced patients. Hypertension. 2001;38:949–52.

    Article  CAS  PubMed  Google Scholar 

  18. Gosling RG, Budge MM. Terminology for describing the elastic behavior of arteries. Hypertension. 2003;41:1180–2.

    Article  CAS  PubMed  Google Scholar 

  19. O’Rourke MF, Staessen JA, Vlachopoulos C, et al. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15:426–44.

    Article  PubMed  Google Scholar 

  20. Bramwell JC, Hill AV. Velocity of transmission of the pulse wave and elasticity of arteries. Lancet. 1922;1:891–2.

    Article  Google Scholar 

  21. Armentano RL, Barra JG, Levenson J, et al. Arterial wall mechanics in conscious dogs: assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ Res. 1995;76:468–78.

    Article  CAS  PubMed  Google Scholar 

  22. Dobrin PB, Rovick AA. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol. 1969;217:1644–51.

    CAS  PubMed  Google Scholar 

  23. Bergel DH. Viscoelastic properties of the arterial wall. London: University of London; 1960.

    Google Scholar 

  24. Bergel DH. The static elastic properties of the arterial wall. J Physiol. 1961;156:445–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Armentano RL, Barra JG, Santana DB, et al. Smart damping modulation of carotid wall energetics in human hypertension: effects of angiotensin-converting enzyme inhibition. Hypertension. 2006;47:384–90.

    Article  CAS  PubMed  Google Scholar 

  26. Callaghan FJ, Babbs CF, Bourland JD, Geddes LA. The relationship between arterial pulse-wave velocity and pulse frequency at different pressures. J Med Eng Technol. 1984;8:15–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lantelme P, Mestre C, Lievre M, et al. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39:1083–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mangoni AA, Mircoli L, Giannattasio C, et al. Heart rate-dependence of arterial distensibility in vivo. J Hypertens. 1996;14:897–901.

    Article  CAS  PubMed  Google Scholar 

  29. Liang YL, Gatzka CD, Du XJ, et al. Effects of heart rate on arterial compliance in men. Clin Exp Pharmacol Physiol. 1999;26:342–6.

    Article  CAS  PubMed  Google Scholar 

  30. Albaladejo P, Challande P, Kakou A, et al. Selective reduction of heart rate by ivabradine: effect on the visco-elastic arterial properties in rats. J Hypertens. 2004;22:1739–45.

    Article  CAS  PubMed  Google Scholar 

  31. Tan I, Butlin M, Liu YY, et al. Heart rate dependence of aortic pulse wave velocity at different arterial pressures in rats. Hypertension. 2012;60:528–33.

    Article  CAS  PubMed  Google Scholar 

  32. Avolio AP, Butlin M, Liu Y-Y, et al. Regulation of arterial stiffness: cellular, molecular and neurogenic mechanisms. Artery Res. 2011;5:122–7.

    Article  Google Scholar 

  33. Mangoni AA, Mircoli L, Giannattasio C, et al. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension. 1997;30:1085–8.

    Article  CAS  PubMed  Google Scholar 

  34. Haesler E, Lyon X, Pruvot E, et al. Confounding effects of heart rate on pulse wave velocity in paced patients with a low degree of atherosclerosis. J Hypertens. 2004;22:1317–22.

    Article  CAS  PubMed  Google Scholar 

  35. Millasseau SC, Stewart AD, Patel SJ, et al. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension. 2005;45:222–6.

    Article  CAS  PubMed  Google Scholar 

  36. Albaladejo P, Laurent P, Pannier B, et al. Influence of sex on the relation between heart rate and aortic stiffness. J Hypertens. 2003;21:555–62.

    Article  CAS  PubMed  Google Scholar 

  37. Sa Cunha R, Pannier B, Benetos A, et al. Association between high heart rate and high arterial rigidity in normotensive and hypertensive subjects. J Hypertens. 1997;15:1423–30.

    Article  CAS  PubMed  Google Scholar 

  38. Avolio AP, Jones D, Tafazzoli-Shadpour M. Quantification of alterations in structure and function of elastin in the arterial media. Hypertension. 1998;32:170–5.

    Article  CAS  PubMed  Google Scholar 

  39. Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14:160–7.

    Article  CAS  PubMed  Google Scholar 

  40. Chen CH, Nevo E, Fetics B, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95:1827–36.

    Article  CAS  PubMed  Google Scholar 

  41. Wilkinson IB, Mohammad NH, Tyrrell S, et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15:24–30.

    Article  PubMed  Google Scholar 

  42. Avolio AP, Van Bortel LM, Boutouyrie P, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54:375–83.

    Article  CAS  PubMed  Google Scholar 

  43. O’Rourke MF, Blazek JV, Morreels Jr CL, Krovetz LJ. Pressure wave transmission along the human aorta. Changes with age and in arterial degenerative disease. Circ Res. 1968;23:567–79.

    Article  PubMed  Google Scholar 

  44. Rowell LB, Brengelmann GL, Blackmon JR, et al. Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation. 1968;37:954–64.

    Article  CAS  PubMed  Google Scholar 

  45. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    Article  CAS  PubMed  Google Scholar 

  46. Devereux RB, Palmieri V, Liu JE, et al. Progressive hypertrophy regression with sustained pressure reduction in hypertension: the Losartan Intervention For Endpoint reduction study. J Hypertens. 2002;20:1445–50.

    Article  CAS  PubMed  Google Scholar 

  47. De Luca N, Asmar RG, London GM, et al. Selective reduction of cardiac mass and central blood pressure on low-dose combination perindopril/indapamide in hypertensive subjects. J Hypertens. 2004;22:1623–30.

    Article  PubMed  Google Scholar 

  48. Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  CAS  PubMed  Google Scholar 

  49. Whelton SP, Blankstein R, Al-Mallah MH, et al. Association of resting heart rate with carotid and aortic arterial stiffness: multi-ethnic study of atherosclerosis. Hypertension. 2013;62(3):477–84.

    Article  CAS  PubMed  Google Scholar 

  50. Wilkinson IB, MacCallum H, Flint L, et al. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525:263–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Avolio A, Butlin M, Tan I. Importance of pressure pulse amplification in the association of resting heart rate and arterial stiffness. Hypertension. 2013;62:e46.

    Article  CAS  PubMed  Google Scholar 

  52. Levine HJ. Rest heart rate and life expectancy. J Am Coll Cardiol. 1997;30:1104–6.

    Article  CAS  PubMed  Google Scholar 

  53. Dyer AR, Persky V, Stamler J, et al. Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemiol. 1980;112:736–49.

    CAS  PubMed  Google Scholar 

  54. Kannel WB, Kannel C, Paffenbarger RS, Cupples LA. Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J. 1987;113:1489–94.

    Article  CAS  PubMed  Google Scholar 

  55. Jouven X, Desnos M, Guerot C, Ducimetiere P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999;99:1978–83.

    Article  CAS  PubMed  Google Scholar 

  56. Kristal-Boneh E, Silber H, Harari G, Froom P. The association of resting heart rate with cardiovascular, cancer and all-cause mortality. Eight year follow-up of 3527 male Israeli employees (the CORDIS Study). Eur Heart J. 2000;21:116–24.

    Article  CAS  PubMed  Google Scholar 

  57. Benetos A, Thomas F, Bean K, et al. Resting heart rate in older people: a predictor of survival to age 85. J Am Geriatr Soc. 2003;51:284–5.

    Article  PubMed  Google Scholar 

  58. Goldberg RJ, Larson M, Levy D. Factors associated with survival to 75 years of age in middle-aged men and women. The Framingham Study. Arch Intern Med. 1996;156:505–9.

    Article  CAS  PubMed  Google Scholar 

  59. Benetos A, Rudnichi A, Thomas F, et al. Influence of heart rate on mortality in a French population: role of age, gender, and blood pressure. Hypertension. 1999;33:44–52.

    Article  CAS  PubMed  Google Scholar 

  60. Thomas F, Bean K, Provost JC, et al. Combined effects of heart rate and pulse pressure on cardiovascular mortality according to age. J Hypertens. 2001;19:863–9.

    Article  CAS  PubMed  Google Scholar 

  61. Palatini P, Julius S. Heart rate and the cardiovascular risk. J Hypertens. 1997;15:3–17.

    Article  CAS  PubMed  Google Scholar 

  62. Morcet JF, Safar M, Thomas F, et al. Associations between heart rate and other risk factors in a large French population. J Hypertens. 1999;17:1671–6.

    Article  CAS  PubMed  Google Scholar 

  63. Fornwalt BK, Gonzales PC, Delfino JG, et al. Quantification of left ventricular internal flow from cardiac magnetic resonance images in patients with dyssynchronous heart failure. J Magn Reson Imaging. 2008;28:375–81.

    Article  PubMed  Google Scholar 

  64. Kirk JA, Kass DA. Electromechanical dyssynchrony and resynchronization of the failing heart. Circ Res. 2013;113:765–76.

    Article  CAS  PubMed  Google Scholar 

  65. Abraham WT, Hayes DL. Cardiac resynchronization therapy for heart failure. Circulation. 2003;108:2596–603.

    Article  PubMed  Google Scholar 

  66. Gorcsan J, Abraham T, Agler DA, et al. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting – a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr. 2008;21:191–213.

    Article  PubMed  Google Scholar 

  67. Whinnett ZI, Davies JER, Willson K, et al. Haemodynamic effects of changes in atrioventricular and interventricular delay in cardiac resynchronisation therapy show a consistent pattern: analysis of shape, magnitude and relative importance of atrioventricular and interventricular delay. Heart. 2006;92:1628–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Whinnett ZI, Davies JER, Willson K, et al. Determination of optimal atrioventricular delay for cardiac resynchronization therapy using acute non-invasive blood pressure. Europace. 2006;8:358–66.

    Article  PubMed  Google Scholar 

  69. Butter C, Stellbrink C, Belalcazar A, et al. Cardiac resynchronization therapy optimization by finger plethysmography. Heart Rhythm. 2004;1:568–75.

    Article  PubMed  Google Scholar 

  70. Di Molfetta A, Santini L, Forleo GB, et al. Use of a comprehensive numerical model to improve biventricular pacemaker temporization in patients affected by heart failure undergoing to CRT-D therapy. Med Biol Eng Comput. 2010;48:755–64.

    Article  PubMed  Google Scholar 

  71. Xu K, Butlin M, Avolio AP. Assessment of hemodynamic load components affecting optimization of cardiac resynchronization therapy by lumped parameter model. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6661–4.

    PubMed  Google Scholar 

  72. Avolio AP, Benetos A. Heart rate, pulse pressure and arterial stiffness. In: O’Rourke MF, Safar ME, editors. Handbook of hypertension. Oxford: Elsevier; 2006. p. 279–94.

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge Professor Athanase Benetos for the contribution of background material on the relevance of heart rate as reported in previous collaborative work [72] and the modeling work conducted by Mr. Xu Ke informing some of the details included in the cardiac synchrony and hemodynamics section [71].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto P. Avolio PhD, BE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Avolio, A.P., Butlin, M., Tan, I. (2014). Heart Rate, Synchrony and Arterial Hemodynamics. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics