Skip to main content

Arterial Stiffness, Wave Reflection, Wave Amplification: Basic Concepts, Principles of Measurement and Analysis in Humans

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

The arterial system has two functions – as a conduit to deliver blood at high pressure to the organs and tissues of the body according to need, and as a cushion, to reduce pulsations generated by the intermittently-pumping left ventricle, so that blood flow through peripheral high and low resistance vascular beds is steady with little residual pulsation (O’Rourke, Chapter 1: Principles and definitions of arterial stiffness, wave reflections and pulse pressure amplification. In: Safar ME, O’Rourke MF (eds) Arterial stiffness in hypertension. Handbook of hypertension, vol 23. Elsevier, Amsterdam, 2006; Nichols et al., McDonald’s blood flow in arteries, 6th edn. Arnold Hodder, London, 2011). The arterial system in man is beautifully suited to serve these functions, at least through childhood, adolescence and young adulthood (Taylor, Gastroenterology 52:358–363, 1967). By mid-life, effects of pulsatile strain on non-living elastic fibres in the highly pulsatile aorta lead to their fracture and to progressive passive aortic dilation, with transfer of stress to more rigid collagen fibres in the media (Nichols et al., McDonald’s blood flow in arteries, 6th edn. Arnold Hodder, London, 2011). Such changes have adverse effects on arterial function and ideal timing of vascular/ventricular interaction (O’Rourke and Nichols, Hypertension 45:652–658, 2005; Laurent et al., Eur Heart J 27:2588–2605, 2006; O’Rourke and Hashimoto, J Am Coll Cardiol 50:1–13, 2007). As later years pass, impaired arterial function plays an important role in morbidity and mortality, becoming a key factor in development of Isolated Systolic Hypertension of the Elderly (ISHE), and cardiac failure (Chirinos et al. 2012; Weber et al. 2013) and of cerebral micro-infarcts and hemorrhage with cognitive impairment and dementia (O’Rourke and Safar ME, Hypertension 46:200–204, 2005; Stone, Med Hypotheses 71:347–359, 2008; Gorelick, Stroke 42:2672–2713, 2011). This introductory chapter discusses mechanisms and introduces strategies for treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Rourke MF. Chapter 1: Principles and definitions of arterial stiffness, wave reflections and pulse pressure amplification. In: Safar ME, O’Rourke MF, editors. Arterial stiffness in hypertension, Handbook of hypertension, vol. 23. Amsterdam: Elsevier; 2006.

    Google Scholar 

  2. Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. London: Arnold Hodder; 2011.

    Google Scholar 

  3. Taylor MG. The elastic properties of arteries in relation to the physiological functions of the arterial system. Gastroenterology. 1967;52:358–63.

    CAS  PubMed  Google Scholar 

  4. O’Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension. 2005;45:652–8.

    Article  PubMed  Google Scholar 

  5. Laurent S, Cockcroft J, Van Bortel L, et al. On behalf of the European Network for Non-invasive Investigation of Large Arteries. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  6. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging. J Am Coll Cardiol. 2007;50:1–13.

    Article  PubMed  Google Scholar 

  7. Chirinos JA, Kips JG, Jacobs Jr DR, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Weber T, Wassertheurer S, O’Rourke MF, et al. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83.

    Article  PubMed  Google Scholar 

  9. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    Article  PubMed  Google Scholar 

  10. Stone J. What initiates the formation of senile plaques? The origin of Alzheimer-like dementias in capillary haemorrhages. Med Hypotheses. 2008;71:347–59.

    Article  PubMed  Google Scholar 

  11. Gorelick PB, Scuteri A, Black SE, Decarli C, American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hales S. 1733: Statical essays: containing haemastaticks, History of Medicine Series, Library of New York Academy of Medicine, vol. 22. New York: Hafner Publishing; 1964.

    Google Scholar 

  13. Weber T, Ammer M, Rammer M, et al. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens. 2009;27:1624–30.

    Article  CAS  PubMed  Google Scholar 

  14. Milnor WR. Aortic wavelength as a determinant of the relation between heart rate and body size in mammals. Am J Physiol. 1979;237:R3–6.

    CAS  PubMed  Google Scholar 

  15. O’Rourke MF. Commentary on: Aortic wavelength as a determinant of the relationship between heart rate and body size in mammals. Am J Physiol. 1981;240:R393–5.

    PubMed  Google Scholar 

  16. American Physiological Society. Handbook of physiology. Washington, DC: American Physiology Society; 1963.

    Google Scholar 

  17. Postel-Vinay NA. A century of arterial hypertension 1896–1996. Chichester: Wiley; 1996.

    Google Scholar 

  18. O’Rourke MF. Dynamic accuracy of the electromagnetic flowmeter. J Appl Physiol. 1965;20:142–7.

    PubMed  Google Scholar 

  19. Ludwig C. Contributions to the knowledge of the influence of the respiratory movements upon the blood flow in the arterial system. In: Ruskin A, Charles CT, editors. Classics in arterial hypertension. Springfield: Charles C. Thomas; 1847.

    Google Scholar 

  20. Gregg DE, Fisher LC. Blood supply to the heart. In: Handbook of physiology. Section 2: Circulation, vol. II. Washington, DC: American Physiological Society; 1963.

    Google Scholar 

  21. Braunwald E. The determinants of myocardial oxygen consumption. Physiologist. 1969;12:65–93.

    CAS  PubMed  Google Scholar 

  22. McDonald DA, Taylor MG. The hydrodynamics of the arterial circulation. Prog Biophys. 1959;9:107–73.

    Google Scholar 

  23. Womersley JR. The mathematical analysis of the arterial circulation in a state of oscillatory motion. Technical Report Wade-TR. 56-614. Dayton: Wright Air Development Center; 1957.

    Google Scholar 

  24. O’Rourke MF, Nichols WW, Vlachopoulos C. CrossTalk: Wave reflection and the Physiological Society. J Physiol. 2013;591. Comments on the CrossTalk proposal and opposing view: Forward and backward pressure waves in the arterial system.

    Google Scholar 

  25. Moore W. The Knife Man: the coach driver’s knee. New York: Broadway Books; 2005. p. 1–44.

    Google Scholar 

  26. Westerhof N, Sipkema P, van der Bos GC, et al. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6:648–56.

    Article  CAS  PubMed  Google Scholar 

  27. Tyberg JV, Bouwmeester JC, Shrive NG, Wang JJ. CrossTalk opposing view: Forward and backward pressure waves in the arterial system do not represent reality. J Physiol. 2013;591:1171–3; discussion 1175.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sen S, Asrress KN, Nijjer S, Petraco R, et al. Diagnostic classification of the instantaneous wave-free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (Classification Accuracy of Pressure-Only Ratios Against Indices Using Flow Study). J Am Coll Cardiol. 2013;61:1409–20.

    Article  PubMed  Google Scholar 

  29. Johnson NP, Kirkeeide RL, Gould KL. Reply: Instantaneous wave-free ratio numerically different, but diagnostically superior to FFR? Is lower always better? J Am Coll Cardiol. 2013;62:566–7.

    Article  PubMed  Google Scholar 

  30. Westerhof N, O’Rourke MF. Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens. 1995;13:943–52.

    Article  CAS  PubMed  Google Scholar 

  31. Miyashita H, Ikeda U, Tsuruya Y, et al. Noninvasive evaluation of the influence of aortic wave reflection on left ventricular ejection during auxotonic contraction. Heart Vessels. 1994;9:30–9.

    Article  CAS  PubMed  Google Scholar 

  32. O’Rourke MF, Taylor MG. Vascular impedance of the femoral bed. Circ Res. 1966;18:126–39.

    Article  Google Scholar 

  33. Milnor WR. Arterial impedance as ventricular afterload. Circ Res. 1975;36:565–70.

    Article  CAS  PubMed  Google Scholar 

  34. Bensalah MZ, Bollache E, Kachenoura N, Giron A, De Cesare A, Macron L, Lefort M, Redheuill A, Mousseaux E. Geometry is a major determinant of flow reversal in proximal aorta. Am J Physiol Heart Circ Physiol 2014;306:H1408–16.

    Google Scholar 

  35. O’Rourke M, Adji A, Kachenoura N, Bollache E, Mousseaux E, Avolio A. Effects of aging on ascending aortic flow waveform. Pulse. 2013;1:44–5.

    Google Scholar 

  36. Segers P, Rietzschel ER, De Buyzere ML, et al. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension. 2007;49:1248–55.

    Article  CAS  PubMed  Google Scholar 

  37. Mitchell GF, Parise H, Benjamin EJ, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women. The Framingham Heart Study. Hypertension. 2004;43:1239–45.

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell GF. Clinical achievements of impedance analysis. Med Biol Eng Comput. 2009;47:153–63.

    Article  PubMed  Google Scholar 

  39. O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20:365–80.

    Article  PubMed  Google Scholar 

  40. Taylor MG. Wave transmission through an assembly of randomly branching elastic tubes. Biophys J. 1966;6:697–716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Karamanoglu M, O’Rourke MF, Avolio AP, et al. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14:160–7.

    Article  CAS  PubMed  Google Scholar 

  42. Van Bortel LM, Balkestein EJ, Van Der Heijden-Spek JJ, et al. Non-invasive assessment of local arterial pulse pressure, comparison of applanation tonometry and echo-tracking. J Hypertens. 2001;19:1037–44.

    Article  PubMed  Google Scholar 

  43. Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Adji A, O’Rourke MF. Brachial artery tonometry and the Popeye phenomenon: explanation of anomalies in generating central from upper limb pressure waveform. J Hypertens. 2012;30:1540–51.

    Article  CAS  PubMed  Google Scholar 

  45. Karamanoglu M, Gallagher DE, Avolio AP, et al. Pressure wave propagation in a multibranched model of the human upper limb. Am J Physiol. 1995;269:H1363–9.

    CAS  PubMed  Google Scholar 

  46. Cheng HM, Chuang SY, Sung SH, et al. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol. 2013;62:1780–7.

    Article  PubMed  Google Scholar 

  47. O'Rourke MF, Avolio AP. Improved cardiovascular performance with optimal entrainment between heart rate and step rate during running in man. Coron Artery Dis. 1992;3:963–9.

    Google Scholar 

  48. Folkow B, Gaskell P, Waaler B. Blood flow through limb muscles during heavy rhythmic exercise. Acta Physiol Scand. 1970;80:61–72.

    Article  CAS  PubMed  Google Scholar 

  49. Folkow B, Haglund Y, Jodal M, et al. Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol Scand. 1971;81:157–63.

    Article  CAS  PubMed  Google Scholar 

  50. Folkow B, Svanborg A. Physiology of cardiovascular aging. Physiol Rev. 1993;73:725–64.

    CAS  PubMed  Google Scholar 

  51. Wheat Jr MW. Acute dissecting aneurysms of the aorta: diagnosis and treatment – 1979. Am Heart J. 1980;99:373–87.

    Article  PubMed  Google Scholar 

  52. O’Rourke MF, Adji A. Basis for use of central blood pressure measurement in office clinical practice. J Am Soc Hypertens. 2008;1:28–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. O’Rourke MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

O’Rourke, M.F., O’Brien, C., Weber, T. (2014). Arterial Stiffness, Wave Reflection, Wave Amplification: Basic Concepts, Principles of Measurement and Analysis in Humans. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics