Skip to main content

Abrasive Water Jet Milling

  • Chapter
  • First Online:
Nontraditional Machining Processes

Abstract

Abrasive water jet (AWJ) machining and abrasive water jet cutting (AWJC) are widely used, especially where very hard materials like titanium (Ti) alloys, high-strength steel, ceramics, etc. need to be machined or cut. In this chapter, an overview of the abrasive water jet milling (AWJM) process is presented. The essential challenge is at controlling the depth of cut (DoC) produced by varying the important AWJ machining process parameters. Experimental studies, process modeling and control based on FEM, artificial intelligence techniques and regression, and mechanisms of material removal are covered from the recent literature with the focus being on Titanium alloys. Experimental study and nonlinear regression–based process modeling of controlled depth AWJ milling of Grade 2 Ti alloy is also presented. Finally, various challenges including scope of future research in AWJM are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WaterJets (2012) www.waterjets.org. Last accessed December 2012

  2. Developments in Abrasive WaterJet Technology (2012) http://www.wjta.org/wjta/New_Developments_etc.asp. Last accessed December 2012

  3. WaterJet Machining (2012) http://www.nottingham.ac.uk/nimrc/research/advancedmanufacturing/waterjet-machining.aspx. Last accessed December 2012

  4. Fowler G (2003) Abrasive water-jet-controlled depth milling of titanium alloys. PhD Thesis, Nottingham University, pp 4–56

    Google Scholar 

  5. Hashish M (1987) Conference on wear of materials. In: Proceedings of Internet Texas, ASME, NY, pp 769–776

    Google Scholar 

  6. http://www.theengineer.co.uk/production-engineering/news/abrasive-water-jet-model-could-enable-lower-cost-milling/1011031.article#ixzz2EUuX9zVB. Last accessed December 2012

  7. Gudani R, Shukla M (2012) Controlled depth abrasive water jet cutting of grade 2 titanium and regression modeling. Int J Mech Eng Mater Sci 5(2):117–122

    Google Scholar 

  8. Siddiqui TU (2010) Abrasive water jet cutting of continuous fiber-reinforced polymer composites: experimental studies, modeling and multi-objective optimization. Unpublished PhD thesis, MNNIT Allahabad

    Google Scholar 

  9. Hashish M (1994) Three-dimensional machining with abrasive waterjets, waterjet cutting technology. Mechanical Engineering Publications, Ltd, London, pp 605–633

    Google Scholar 

  10. Kovacevic R, Hashish M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. Trans ASME 119:776–785

    Google Scholar 

  11. Folkes J (2009) Waterjet–an innovative tool for manufacturing. J Mater Process Technol 209(20):6181–6189

    Article  Google Scholar 

  12. Fowler G, Shipway PH, Pashby IR (2005) Abrasive water-jet controlled depth milling of Ti6Al4V alloy—an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161:407–414

    Article  Google Scholar 

  13. Uhlmann E, Flögel K, Kretzschmar M, Faltin F (2012) Abrasive waterjet turning of high performance materials. In: 5th CIRP conference on high performance cutting 2012, Procedia CIRP 1, pp 409–413

    Google Scholar 

  14. Manu R, Ramesh Babu N (2008) Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys. Int J Mach Mach Mater 3(1/2):120–132

    Google Scholar 

  15. Axinte DA, Stepanian JP, Kong MC, McGourlay J (2009) Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. Int J Mach Tools Manuf 49(3–4):351–356

    Article  Google Scholar 

  16. Siddiqui TU, Shukla M (2011) Abrasive waterjet hole trepanning of thick Kevlar-epoxy composites for ballistic applications–experimental investigations and analysis using design of experiments methodology. Int J Mach Mach Mater 10(3):172–186

    Google Scholar 

  17. Hashish M (1987) Turning with abrasive waterjets—a first investigation. ASME J Eng Indus 109(4):281–290

    Article  Google Scholar 

  18. Hashish M (1991) Characteristics of surfaces machined with abrasive waterjets. J Eng Mater Technol Trans ASME 113(3):354–362

    Article  Google Scholar 

  19. Selvan MCP, Raju NMS (2011) Review of the current state of research and development in abrasive waterjet cutting. Int J Adv Eng Sci Technol 11(2):267–275

    Google Scholar 

  20. N. Yusup, Zain AM, Hashim SZM (2012) Evolutionary techniques in optimizing machining parameters: review and recent applications (2007–2011). Expert Syst Appl 39:9909–9927

    Google Scholar 

  21. Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193(2):207–217

    Article  Google Scholar 

  22. Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol 73:179–188

    Article  Google Scholar 

  23. Hashish M, Monserud D (1990) Abrasive waterjet machining of isogrid structures. Quest Integrated Inc., Report QUEST TR-508, pp 63

    Google Scholar 

  24. Shipway PH, Fowler G, Pashby IR (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear 258:123–132

    Article  Google Scholar 

  25. Fowler G, Shipway PH, Pashby IR (2008) An investigation of the role of jet impingement angle on process efficiency and surface characteristics for abrasive waterjet milling of Ti6A14V. In: Proceedings of the 19th international conference on water jetting, Nottingham, UK, pp 353–364

    Google Scholar 

  26. Hashish M (2008) Waterjet pocket milling of titanium aluminide. In: Proceedings of the 19th international conference on water jetting, Nottingham, UK, pp 365–376

    Google Scholar 

  27. Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266:613–620

    Article  Google Scholar 

  28. Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tools Manuf 49:1077–1088

    Article  Google Scholar 

  29. Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard-brittle materials. Int J Mach Tools Manuf 49(7–8):569–578

    Article  Google Scholar 

  30. Hloch S, Valicek J (2011) Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int J Surf Sci Eng 5(2/3)

    Google Scholar 

  31. Dadkhahipour K, Nguyen T, Wang J (2012) Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear 292–293:1–10

    Article  Google Scholar 

  32. Pang KL, Nguyen T, Fan JM, Wang J (2012) Modelling of the micro-channelling process on glasses using an abrasive slurry jet. Int J Mach Tools Manuf 53:118–126

    Article  Google Scholar 

  33. Rabani A, Marinescu I, Axinte D (2012) Acoustic emission energy transfer rate: a method for monitoring abrasive waterjet milling. Int J Mach Tools Manuf 61:80–89

    Google Scholar 

  34. Alberdi A, Rivero A, de Lacalle LNL (2011) Experimental study of the slot overlapping and tool path variation effect in abrasive waterjet milling. J Manuf Sci Eng 133(3):034502

    Article  Google Scholar 

  35. Alberdi A, Rivero A, Carrascal A, Lamikiz A (2012) Kerf profile modelling in abrasive waterjet milling. Mater Sci Forum 713:91–96

    Article  Google Scholar 

  36. Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of abrasive waterjet milled footprints. J Mater Process Technol 213:180–193

    Article  Google Scholar 

  37. Kovacevic R, Yong Z (1996) Modeling of 3D abrasive waterjet machining, part I: theoretical basis, jetting technology. Institution of Mechanical Engineers, pp 73–82

    Google Scholar 

  38. Yong Z, Kovacevic R (1996) Modeling of 3D abrasive waterjet machining, part II: simulation of machining, jetting technology. Institution of Mechanical Engineers, pp 83–89

    Google Scholar 

  39. Duflou JR, Kruth JP, Bohez EL (2001) Contour cutting of pre-formed parts with abrasive waterjet using 3-axis nozzle control. J Mater Process Technol 115(1):38–43

    Article  Google Scholar 

  40. Hashish M (2005) Economics of abrasive-waterjet cutting at 600 MPA pressure. In: Proceedings of WJTA American waterjet conference, Houston, Texas, Paper 4A-3, pp 1–14

    Google Scholar 

  41. Hoogstrate AM, Susuzlu T, Karpuschewski B (2006) High performance cutting with abrasive waterjets beyond 400 MPa. CIRP Ann Manuf Technol 55(1):1–4

    Article  Google Scholar 

  42. Boud F, Carpenter C, Folkes J, Shipway PH (2010) Abrasive waterjet cutting of a titanium alloy: the influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality. J Mater Process Technol 210(15):2197–2205

    Google Scholar 

  43. Kong MC, Anwar S, Billingham J, Axinte DA (2012) Mathematical modeling of abrasive waterjet footprints for arbitrarily moving jets: partI—single straight paths. Int J Mach Tools Manuf 53:58–68

    Article  Google Scholar 

  44. Palafox GAE, Gault RS, Ridgway K (2012) Characterisation of abrasive water-jet process for pocket milling in Inconel 718. In: 5th CIRP conference on high performance cutting, procedia CIRP 1 (2012), pp 404–408

    Google Scholar 

  45. Evans AG, Gulden ME, Rosenblatt ME (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proc R Soc Lon A 361:343–365

    Google Scholar 

  46. Abdel-Rahman AA, El-Domiaty AA (1998) Maximum depth of cut for ceramics using abrasive waterjet technique. Wear 218(2):216–222

    Google Scholar 

  47. Hassan A, Chen C, Kovacevic R (2004) On-line monitoring of depth of cut in AWJ cutting. Int J Mach Tools Manuf 44:595–605

    Article  Google Scholar 

  48. Lemma E, Deam R, Chen L (2005) Maximum depth of cut and mechanics of erosion in AWJ oscillation cutting of ductile materials. J Mater Process Technol 160(2):188–197

    Article  Google Scholar 

  49. Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49(3):306–316

    Article  Google Scholar 

  50. Wang J (2009) A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics. J Mater Process Technol 209(5):2314–2320

    Article  Google Scholar 

  51. Kumar N, Shukla M (2012) Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. J Comput Appl Math 236(18):4600–4610

    Article  MATH  Google Scholar 

  52. Vikram G, Ramesh Babu N (2002) Modelling and analysis of abrasive waterjet cut surface topography. Int J Mach Tools Manuf 42:1345–1354

    Google Scholar 

  53. Hlavac LM (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 209(8):4154–4161

    Article  Google Scholar 

  54. Kovacevic R, Fang M (1994) Modeling of the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34(1):55–72

    Article  Google Scholar 

  55. Srinivasu DS, Ramesh Babu N (2008) A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl Soft Comput 8(1):809–819

    Article  Google Scholar 

  56. Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326

    Article  Google Scholar 

  57. Zain AM, Haron H, Sharif S (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA–GA. Appl Soft Comput 11:5350–5359

    Article  Google Scholar 

  58. Vundavilli PR, Parappagoudar MB, Kodali SP, Benguluri S (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowledge-Based Systems 27:456–464

    Google Scholar 

  59. Kumar N, Shukla M, Patel RK (2010) Finite element modeling of erosive wear in abrasive jet machining. In: International conference on theoretical, applied, computational and experimental mechanics, ICTACEM, IIT Kharagpur, India, Paper 168

    Google Scholar 

  60. Hassan AI, Kosmol J (2000) Finite element modeling of abrasive water-jet machining. In: Proceedings of the 15th International conference on jetting technology. Ronneby (Sweden): BHR Group, pp 321–33

    Google Scholar 

  61. Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32:7

    Google Scholar 

  62. Ahmadi-Brooghani SY, Hassanzadeh H, Kahhal P (2007) Modeling of single-particle impact in abrasive water jet machining. Int J Mech Sys Sci Eng 1:4

    Google Scholar 

  63. Takaffoli M, Papini M (2009) Finite element analysis of single impacts of angular particles on ductile targets. Wear 267:144–151

    Article  Google Scholar 

  64. Anwar S, Axinte DA, Becker AA (2011) Finite element modelling of a single-particle impact during abrasive waterjet milling. In: Proceedings of the Institution of Mechanical Engineers, part J: Journal of Engineering Tribology, August 2011, vol 225, 8, pp 821–832

    Google Scholar 

  65. ElTobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45:1337–1346

    Article  Google Scholar 

  66. Molinari JF, Ortiz M (2002) A study of solid-particle erosion of metallic targets. Impact Eng 27:347–358

    Article  Google Scholar 

  67. Shimizu K, Noguchi T, Seitoh H, Okadab M, Matsubara Y (2001) FEM analysis of erosive wear. Wear 250:779–784

    Article  Google Scholar 

  68. Liu H http://www.eprints.qut.edu.au/16110/1/Hua_Liu_Thesis.pdf

  69. Wang R, Wang M (2010) A two-fluid model of abrasive waterjet. J Mater Process Technol 210(1):190–196

    Article  Google Scholar 

  70. Arcam Titanium Grade 2 (2012) www.arcam.com/CommonResources/Files/arcam.com/Documents/EBM%20Materials/Arcam-Titanium-Grade-2.pdf. Last accessed December 2012

  71. Flow Mach 4 AWJ machines (2012) http://www.flowwaterjet.com/en/waterjet-cutting/cutting-systems/mach-4.aspx. Last accessed December 2012

  72. www.precisionmachinerysales.com/waterjet/1392.htm. Last accessed December 2012

  73. http://www.sawaterjet.co.za/photo_gallery/index2.html. Last accessed December 2012

  74. Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, London

    Book  MATH  Google Scholar 

  75. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Oxford Publications, New York

    Google Scholar 

  76. Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49:306–316

    Google Scholar 

  77. Siddiqui TU, Shukla M (2010) Modeling of depth of cut in abrasive waterjet cutting of thick kevlar-epoxy composites. Key Eng Mater 443:423–427

    Article  Google Scholar 

  78. NLREG (2012) www.nlreg.com. Last accessed December 2012

  79. Minitab (2012) www.minitab.com. Last accessed December 2012

  80. Alberdi A, Rivero A, López de Lacalle LN, Suárez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51:467–480

    Article  Google Scholar 

  81. Shukla M, Tambe PB (2013) Genetic algorithm based optimization of material removal rate with surface finish constraints in abrasive water jet cutting of carbon-epoxy composites. Accepted in Natural Computing

    Google Scholar 

  82. Siddiqui TU, Shukla M (2012) Modeling and optimization of abrasive water jet cutting of kevlar fiber-reinforced polymer composites, in “computational methods for optimizing manufacturing technology—models and techniques”. IGI Global, USA, pp 262–286

    Google Scholar 

  83. Shukla M, Tambe PB (2010) Predictive modeling of surface roughness and kerf widths in abrasive water jet cutting of kevlar composites using neural network. Int J Mach Mach Mater 8(1 & 2):226–246

    Google Scholar 

  84. Borkowski J (2010) Application of abrasive-water jet technology for material sculpturing. Trans Can Soc Mech Eng 34(3–4):389–398

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The financial assistance provided by the Faculty of Engineering and Built Environment, University of Johannesburg, in conducting the experimental studies is greatly acknowledged. Thanks are also due to Dr T U Siddiqui, Dr P B Tambe, Mr Naresh Kumar, and Mr R Gudani, my research students, and to Mr Deon of SA Stainless, Johannesburg, for allowing to conduct experiments on his Flow AWJ machining center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shukla, M. (2013). Abrasive Water Jet Milling. In: Davim, J. (eds) Nontraditional Machining Processes. Springer, London. https://doi.org/10.1007/978-1-4471-5179-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5179-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5178-4

  • Online ISBN: 978-1-4471-5179-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics