Skip to main content

Kenaf Fibre Crop for Bioeconomic Industrial Development

  • Chapter
  • First Online:
Kenaf: A Multi-Purpose Crop for Several Industrial Applications

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Kenaf (Hibiscus cannabinus L.) is a high yielding fibre crop that can be utilised as raw material in many industrial applications ranging from traditional fabrics, yarns and ropes to new applications in building materials, composites and lightweight car parts. Kenaf competes in some applications with other bast fibre crops such as jute, hemp and flax and with wood or wood residues in other markets such as in wall panels and pulp and paper applications. Traditional gunnysack markets switched over to cheap synthetic manmade fibres based on fossil oil, resulting in a decline of demand and production of jute and allied fibres over the past decades. This declining trend may be reversed, only when the different new markets for fibre crops described in this chapter can be established on a viable scale. When the policies for the transition from a petroleum-based economy to the biobased economy are to be implemented, increased demand for these kind of cellulose resources has to be anticipated for. This provides opportunities to develop kenaf-based industries and increased kenaf cultivation, especially in regions with limited supplies of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Bakar MA, Ahmad S et al (2010) The mechanical properties of treated and untreated kenaf fibre reinforced epoxy composite. J Biobased Mater Bioenergy 4(2):159–163

    Article  Google Scholar 

  • Abu Bakar MA, Ahmad S et al (2012) Effect of epoxidized natural rubber on mechanical properties of epoxy reinforced kenaf fibre composites. Pertanika J Sci Technol 20(1):129–137

    Google Scholar 

  • Adnan H (2010) Kenaf plant has profitable business potential. http://biz.thestar.com.my/news/story.asp?sec=business&file=/2010/4/27/business/6121868

  • Ahmed A, Akhtar M. et al (1999) Biomechanical Pulping of kenaf. 1999 Pulping Conference Proceedings

    Google Scholar 

  • Akil HM, Omar MF et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121

    Article  Google Scholar 

  • Alexopoulou E (2008) Kenaf booklet—prepared in the framework of the BIOKENAF project—EU contract QLK5-CT2002-01729 Biomass Production Chain and growth Simulation Model for Kenaf CRES-A&F and others

    Google Scholar 

  • Ang LS, Leh CP et al (2010) Effects of alkaline pre-impregnation and pulping on Malaysia cultivated kenaf (Hibiscus cannabinus). BioResources 5(3):1446–1462

    Google Scholar 

  • Anthony WS (1994) Absorption of oil with cotton products and kenaf. Appl eng agric. St. Joseph, MI: American Society of Agricultural Engineers, 1985. May 1994 10(3):357–361

    Google Scholar 

  • Anuar H, Zuraida A (2011) Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Compos B Eng 42(3):462–465

    Article  Google Scholar 

  • Anuar H, Zuraida A et al (2012) Improvement of mechanical properties of injection-molded polylactic acid-kenaf fiber biocomposite. J Thermoplast Compos Mater 25(2):153–164

    Article  Google Scholar 

  • Ardente F, Beccali M et al (2008) Building energy performance: A LCA case study of kenaf-fibres insulation board. Energy Build 40(1):1–10

    Article  Google Scholar 

  • Atchison JE (1995) Twenty-five years of global progress in non-wood plant fibre pulping. Historical highlights, present status and future prospects. Pulping Conference, Tappi Press, Chicago, USA

    Google Scholar 

  • Ayerza R, Coates W (1996) Kenaf performance in northwestern Argentina. Ind Crops Prod 5(3):223–228

    Article  Google Scholar 

  • Ayre BG, Stevens K et al (2009) Viscoelastic properties of Kenaf bast fiber in relation to stem age. Text Res J 79(11):973–980

    Article  Google Scholar 

  • Bagby MO, Cunningham RL et al (1979) Kenaf thermomechanical pulp in newsprint. Nonwood plant fiber pulping progress report, Tappi vol 10, p 111

    Google Scholar 

  • Boeriu CG, van Dam JEG et al (2005) Biomass valorization for sustainable development. Biofuels for Fuel Cells: renewable energy from biomass fermentation. In: Lens P, Westermann P, Haberbauer, M Moreno A (eds) IWA Publishing, London

    Google Scholar 

  • Buzarovska A, Bogoeva-Gaceva G et al (2007) Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42(16):6501–6509

    Article  Google Scholar 

  • Calamari TA, Tao WY et al (1997) A preliminary study of kenaf fiber bundles and their composite cells. Tappi J 80(8):149–154

    Google Scholar 

  • Carus M, Gahle C (2008) Injection moulding with natural fibres. Reinf Plast 52(4):18–25

    Article  Google Scholar 

  • Catling D, Grayson J (1982) Identification of vegetable fibers. Chapman & Hall, New York

    Book  Google Scholar 

  • Chen E (2011) Fibrous kenaf could be Malaysia’s third big crop. Green prospect Asia

    Google Scholar 

  • Chen Y, Chiparus O et al (2005) Natural fibers for automotive nonwoven composites. J Ind Text 35(1):47–62

    Article  Google Scholar 

  • Choi HM, Cloud RM (1992) Natural sorbents in oil spill cleanup. Environ Sci Technol 26(4):772–776

    Article  Google Scholar 

  • Chow P, Bajwa DS (2005) Oriented strandboard (OSB) panels made from kenaf stalks and aspen. J Nat Fibers 2(1):83–89

    Article  Google Scholar 

  • Clark TF (1970) First bond paper made using kenaf pulp in the furnish. Paper Trade J 158(46):28

    Google Scholar 

  • Clark TF, Nelson GH et al (1962) A search for new fiber crops: V pulping studies on kenaf Tappi J 45(10):780–786

    Google Scholar 

  • Clark TF, Wolff IA (1965) A search for new fiber crops: VIII sulfate pulping of kenaf. Tappi J 48(6):381–384

    Google Scholar 

  • Collier BJ, Dever M et al (2000) Rheology of lyocell solutions from different cellulose sources. J Polym Environ 8(3):151–154

    Article  Google Scholar 

  • Cunningham RL, Touzinsky GF et al (1979) Brightening of kenaf thermomechanical pulp. Tappi J 62(4):69–70

    Google Scholar 

  • D’Agostino D, Richard A et al (1996) Continuous steam explosion pulping: a viable alternative for pulping of non-woody fibers. TAPPI Pulping Conference, Nashville, Tennessee, USA

    Google Scholar 

  • Deka H, Misra M et al (2012) Renewable resource based all green composites from kenaf biofiber and poly(furfuryl alcohol) bioresin. Ind Crops Prod 41:94–101

    Article  Google Scholar 

  • Dempsey JM (1975) Fiber crops. The University Press of Florida, Gainesville

    Google Scholar 

  • Dittenber DB (2012) Effect of alkalization on flexural properties and moisture absorption of kenaf fiber reinforced composites. International SAMPE Technical Conference

    Google Scholar 

  • Du Y, Zhang J et al (2010) Kenaf bast fiber bundle-reinforced unsaturated polyester composites III: statistical strength characteristics and cost-performance analyses. For Prod J 60(6):514–521

    Google Scholar 

  • Dutt D, Upadhyaya JS et al (2010) Studies on Hibiscus cannabinus, Hibiscus sabdariffa and Cannabis sativa pulp to be a sunbstitut for softwood pulp-part1: AS-AQ delignification process. BioResources 5(4):2123–2136

    Google Scholar 

  • Edeerozey AMM, Akil HM et al (2007) Chemical modification of kenaf fibers. Mater Lett 61(10):2023–2025

    Article  Google Scholar 

  • Eichhorn SJ, Baillie CA et al (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131

    Article  Google Scholar 

  • Elsaid A, Dawood M et al (2011) Mechanical properties of kenaf fiber reinforced concrete. Constr Build Mater 25(4):1991–2001

    Article  Google Scholar 

  • El-Shekeil YA, Sapuan SM et al (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    Article  Google Scholar 

  • FAO (2010) Production, Crops, FAO STAT

    Google Scholar 

  • FAO (2010) Production, Forest, FAO STAT

    Google Scholar 

  • FAO (2011) FAO paper and paperboard capacity survey 2010–2015. http://www.fao.org/docrep/014/i2285t/i2285t00.pdf

  • Farahani GN, Ahmad I et al (2012) Effect of fiber content, fiber length and alkali treatment on properties of Kenaf fiber/upr composites based on recycled pet wastes. Polym Plast Technol Eng 51(6):634–639

    Article  Google Scholar 

  • Feng D (2001) Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym Compos 22(4):506–517

    Google Scholar 

  • Gartside G (1981) Kraft, soda and NSSC pulping of kenaf. Kenaf as a potential source of pulp in Australia. CSIRO, Brisbane

    Google Scholar 

  • Ghalambor A (1995) Evaluation and characterization of sorbents in removal of oil spills. University of Southwestern Louisiana, Louisiana

    Google Scholar 

  • Goforth CE (1994, May 1994) The evaluation of kenaf as an oil sorbent. http://msucares.com/pubs/Variety/Kenaf/kenaf14.htm. Accessed from 2012

  • Graupner N, Herrmann AS et al (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos A Appl Sci Manuf 40(6–7):810–821

    Article  Google Scholar 

  • Green-Natural-Fibres (2012) Nafcore—Kenaf horse bedding. http://www.bednarekquarterhorses.com/nafcore_basic_story.html

  • Han JS, Rowell JK (1997) Chemical composition of fibres. In: Rowell RM, Young RA Rowell JK (eds) Paper and composites from agro-based resources. CRC, Boca Raton

    Google Scholar 

  • Hao A, Zhao H et al (2012) Kenaf fiber nonwoven composites as automotive interior material: mechanical, thermal, and acoustical performance. International SAMPE Technical Conference

    Google Scholar 

  • Hensler KL, Baldwin BS et al (1998) Kenaf-based fiber mat as a substrate for establishing soilless sod. HortTechnology 8(2):171–175

    Google Scholar 

  • Hodgson PW, Lawford WH et al (1981) Commercial paper machine trial of CTMP kenaf in newsprint. Tappi J 64(9):161–164

    Google Scholar 

  • Huang S (2010) Overview on the Chinese pulp & paper market. http://www.internationalpulpweek.com/Pastconf/Susan_Huang2010.pdf?OpenElement. Accessed Aug 2012

  • Ibraheem SA, Ali A et al (2011) Development of green insulation boards from Kenaf fibres and polyurethane. Polym-Plast Technol Eng 50(6):613–621

    Article  Google Scholar 

  • Ibrahim NA, Hadithon KA et al (2010) Effect of fiber treatment on mechanical properties of kenaf fiber-ecoflex composites. J Reinf Plast Compos 29(14):2192–2198

    Article  Google Scholar 

  • Ibrahim M, Daud WRW et al (2011) Comparative properties of soda pulps from stalk, bast, and core of Malaysian grown kenaf. BioResources 6(4):5074–5085

    Google Scholar 

  • IJSG (2012a) World Jute Profile—Malaysia. http://www.jute.org/wjp/cp_malaysia.htm. Accessed Sept 2012

  • IJSG (2012b) World production of Kenaf & Allied fibre from 2003/2004 to 2010/2011. http://www.jute.org/statistics_01.htm#2. Accessed Sept 2012

  • Inagaki M, Nishikawa T et al (2004) Carbonization of kenaf to prepare highly-microporous carbons. Carbon 42(4):890–893

    Article  Google Scholar 

  • Irmak S, Öztürk Ä° (2010) Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass. Int J Hydrogen Energy 35(11):5312–5317

    Article  Google Scholar 

  • Jamaludin MA, Nordin K et al (2007) The bending strength of medium density fibreboard (MDF) from different ratios of kenaf and oil palm empty fruit bunches (EFB) admixture for light weight construction. Key Eng Mater 334(335):77–80

    Google Scholar 

  • Jeyanthi S, Purushothaman M et al (2011) Development of ecofriendly thermoplastics for automotive components. Proceedings of the international conference on green technology and environmental conservation, GTEC-2011

    Google Scholar 

  • Jeyanthi S, Jeevamalar J et al (2012) Influence of natural fibers in recycling of thermoplastics for automotive components. IEEE-international conference on advances in engineering, science and management, ICAESM-2012

    Google Scholar 

  • Jinhua W, Ramaswamy GN (2003) One-Step processing and bleaching of mechanically separated Kenaf fibers: effects on physical and chemical properties. Text Res J 73(4):339–344

    Article  Google Scholar 

  • John MJ, Bellmann C et al (2010) Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites. Carbohydr Polym 82(3):549–554

    Article  Google Scholar 

  • Jonoobi M, Oksman Niska K et al (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639

    Google Scholar 

  • Juliana AH, Paridah MT et al (2012) Properties of three-layer particleboards made from kenaf (Hibiscus cannabinus L.) and rubberwood (Hevea brasiliensis). Mater Des 40:59–63

    Article  Google Scholar 

  • Julkapli NM, Akil HM (2010) Influence of a plasticizer on the mechanical properties of kenaf-filled chitosan bio-composites. Polym Plast Technol Eng 49(9):944–951

    Article  Google Scholar 

  • Kaldor AF (1990) Kenaf—a competitive fiber to plantation eucalypt- based on recent investigations in Thailand. 1990 Pulping Conference

    Google Scholar 

  • Kargarzadeh H, Ahmad I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866

    Article  Google Scholar 

  • Karus M, Ortmann S et al (2006) Use of natural fibres in the German automotive industry. Gummi, Fasern, Kunststoffe 59(3):144–145

    Google Scholar 

  • Kaup M, Karus M et al (2003) The use of natural fibres in composites in the German and Austrian automobile industry, NOVA Institut

    Google Scholar 

  • KEFI (2006) Natural fibres. http://www.kenaf-fiber.com/en/azienda.asp. Accessed Sept 2012

  • Keijsers ERP, Yilmaz G et al ((in print) 2012) The cellulose resource matrix. Carbohydr Polym 93(1):9–21

    Google Scholar 

  • Kim S, Dale BE et al (2008) Life cycle assessment of kenaf fiber reinforced biocomposite. J Biobased Mater Bioenergy 2(1):85–93

    Article  Google Scholar 

  • Kirby RH (1963) Vegetable fibres world crops books. Interscience Publishers, London

    Google Scholar 

  • Kocurek MJ, Stevens CFB (1983) Properties of fibrous raw materials and their preparation for pulping. Pulp and Paper manufacture, 3rd edn. Joint textbook committee of the paper Industry, Montreal

    Google Scholar 

  • Kugler DE (1988) Kenaf newsprint: realizing commercialization of a new crop after four decades of research and development. A Report on the Kenaf demonstration project, United States. Cooperative State Research Service. Special Projects and Program Systems 13

    Google Scholar 

  • Kugler DE (1996) Kenaf commercialization 1986–1995. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria pp 129–132

    Google Scholar 

  • Law TT, Ishak ZAM (2011) Water absorption and dimensional stability of short kenaf fiber-filled polypropylene composites treated with maleated polypropylene. J Appl Polym Sci 120(1):563–572

    Article  Google Scholar 

  • Law K-N, Lanouette R et al (2003) Characterization of kenaf by chemimechanical pulping. Tappi J 86(6):57–67

    Google Scholar 

  • Lawford WH, Tombler G (1982) Kenaf pulp for newsprint. Pulp Paper Can 83(12):99–103

    Google Scholar 

  • Lee CK, Cho MS et al (2010) Preparation and physical properties of the biocomposite, cellulose diacetate/kenaf fiber sized with poly(vinyl alcohol). Macromol Res 18(6):566–570

    Article  MathSciNet  Google Scholar 

  • Liang Z, Pan P et al (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115(6):3559–3567

    Article  Google Scholar 

  • Lips SJJ, van Dam JEG (2007) Kenaf for industrial products—final report Agrotechnology and Food Innovations—EU contract QLK5-CT2002-01729 Biomass Production Chain and growth Simulation Model for Kenaf Agrotechnology and Food Innovations, The Netherlands

    Google Scholar 

  • Lips SJJ, Iñiguez de Heredia GM et al (2009) Water absorption characteristics of kenaf core to use as animal bedding material. Ind Crops Prod 29(1):73–79

    Article  Google Scholar 

  • Ma LF, Yamauchi H et al (2000) Manufacture of cement-bonded boards from wood and other lignocellulosic materials: relationships between cement hydration and mechanical properties of cement-bonded boards. Wood–Cement Composites in the Asia–Pacific Region, Canberra

    Google Scholar 

  • Majid RA, Ismail H et al (2010) Effects of polyethylene-g-maleic anhydride on properties of low density polyethylene/thermoplastic sago starch reinforced kenaf fibre composites. Iran Polym J (English Edition) 19(7):501–510

    Google Scholar 

  • Mohta DC, Roy DN et al (2004) Refiner mechanical pulp from kenaf for newsprint manufacture. Tappi J 3(4):9–13

    Google Scholar 

  • Moreau JP, Bel-Berger P, Tao W (1995) Mechanical processing of kenaf for nonwovens. Tappi J. 78(2):96–105

    Google Scholar 

  • Mossello AA, Harun J et al (2010a) A review of literatures related of using Kenaf for pulp production (Beating, Fractionation, and Recycled Fiber). Mod Appl Sci 4(9):44–49

    Google Scholar 

  • Mossello AA, Harun J et al (2010a) Evaluation of linerboard properties from Malaysian cultivated kenaf soda-anthraquinone pulps versus commercial pulps. BioResources 5(3):1595–1604

    Google Scholar 

  • Mossello AA, Harun J et al (2010b) New approach to use of kenaf for paper and paperboard production. Bioresource 5(4):2112–2122

    Google Scholar 

  • Muehl JH, Krzysik AM et al (1999) Performance of hardboards made from kenaf. Kenaf properties, processing and products. In: Sellers T, Reichert NA (eds) Mississippi State University, Mississippi

    Google Scholar 

  • Munusamy S, Whitacre R et al (2012) Development of biobased sandwich structures for mass transit applications. International SAMPE Technical Conference

    Google Scholar 

  • Myers GC, Bagby MO (1995) Feasibility of using kenaf chemi thermomechanical pulp in printing and writing paper. Tappi J 78:5

    Google Scholar 

  • Nelson GH, Nieschlag HJ et al (1961) A search for new fiber crops: III laboratory scale pulping studies. Tappi J 44(5):319–325

    Google Scholar 

  • Neoh KW, Tshai KY et al (2012) Micro palm and Kenaf fibers reinforced PLA composite: effect of volume fraction on tensile strength. Appl Mech Mater 145:1–5

    Article  Google Scholar 

  • Neto CP, Seca A et al (1996) Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Ind Crops Prod 5(3):189–196

    Article  Google Scholar 

  • Nezamoleslami A, Suzuki K et al (1998) Biobleaching of kenaf bast fibre, soda AQ pulp using white rot fungus. Tappi J 81(6):179–183

    Google Scholar 

  • NFESC (1999) Evaluation of bio-based industrial products for navy and DOD use—Phase 1 Kenaf absorbent. Naval Facilities Engineering Service Center 16

    Google Scholar 

  • Nieschlag HJ, Earle FR et al (1960a) A search for new fiber crops: II analytical evaluation continued. Tappi J 43(12):993–998

    Google Scholar 

  • Nieschlag HJ, Nelson GH et al (1960b) A search for new fiber crops. Tappi J 43(3):193–201

    Google Scholar 

  • Nieschlag HJ, Nelson GH et al (1961) A search for new fiber crops: IV kenaf composition. Tappi J 44(7):515–516

    Google Scholar 

  • Ninomiya K, Kamide K et al (2012) Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour Technol 103(1):259–265

    Article  Google Scholar 

  • Nishimura N, Izumi A et al (2002) Structural characterization of kenaf lignin: differences among kenaf varieties. Ind Crops Prod 15(2):115–122

    Article  Google Scholar 

  • Nishino T, Hirao K et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286

    Article  Google Scholar 

  • Nosbi N, Akil HM et al (2010) Degradation of compressive properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Mater Des 31(10):4960–4964

    Article  Google Scholar 

  • Nyambo C, Mohanty AK et al (2010) Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 11(6):1654–1660

    Article  Google Scholar 

  • Okuda N, Sato M (2004) Manufacture and mechanical properties of binderless boards from kenaf core. J. Wood Sci 50:53–61

    Article  Google Scholar 

  • Okuda N, Sato M (2007) Finely milled kenaf core as a natural plywood binder. Holzforschung 61(4):439–444

    Article  Google Scholar 

  • Okuda N, Sato M (2008) Bond durability of kenaf core binderless boards II: outdoor exposure test. J Wood Sci 54(1):36–44

    Article  Google Scholar 

  • Oliveros R (1999) Validation of raw material coming from kenaf; Progress report for the period of 01–01-98 to 31–12-98. Keninter, Madrid

    Google Scholar 

  • Oliveros R (2000) Validation of raw material coming from kenaf; Consolidated report for the period of 01-01-99 to 31-12-99. Fair CT96 1697 progress report. Madrid, Keninter

    Google Scholar 

  • Öztürk S (2010) Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber-reinforced phenol-formaldehyde composites. J Compos Mater 44(19):2265–2288

    Article  Google Scholar 

  • Pande H (1998) Non-wood fibre and global fibre supply. FAO-Unasylva 193:66

    Google Scholar 

  • Pappas C, Tarantilis PA et al (2002) Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf (Hibiscus cannabinus L.) and eucalyptus (Eucalyptus rodustrus Sm). Ultrason Sonochem 9(1):19–23

    Article  Google Scholar 

  • Parikh DV, Calamari TA et al. (2002). Refining of kenaf fibres for processing into automotive nonwovens. Beltwide Cotton Conferences, Atlanta

    Google Scholar 

  • Paul PK (1991) Phoenix and its views about kenaf. Phoenix pulp & paper Co., Ltd, Bangkok

    Google Scholar 

  • Pearce RJ, Sellers T (2000) Fiver different agr-based particleboards bonded with urea-formaldehyde resin. Am Kenaf Soc 25:23–30

    Google Scholar 

  • Petrini C, Bazzocchi R et al (1994) Yield potential and adaptation of kenaf (Hibiscus cannabinus) in north-central Italy. Ind Crops Prod 3(1–2):11–15

    Article  Google Scholar 

  • Phoenix (2004) http://www.phoenixpulp.com/eng/news.asp. Accessed March 2004

  • Phoenix (2008) http://www.ogcorp.co.jp/en/operations/ppd/phoenix.html. Accessed Oct 2008

  • Pulp and Paper International Online (1998) Kafus leads the way in Spain

    Google Scholar 

  • Pulp and Paper Online (1997) kenaf newsprint mill

    Google Scholar 

  • Puri VP, Higgins HG (1981) Chemimechanical and chemithermomechanical pulping of kenaf. Kenaf as a potential source of pulp in Australia, Brisbane

    Google Scholar 

  • Raju G, Said MM et al (2008) Properties of kenaf fibre reinforced natural rubber composites. J Rubber Res 11(4):187–195

    Google Scholar 

  • Ralph J (1996) An unusual lignin from Kenaf. J Nat Prod 59(4):341–342

    Article  MathSciNet  Google Scholar 

  • Ramaswamy GN, Ruff CG et al (1994) Effect of bacterial and chemical retting on kenaf fiber quality. Text Res J 64(5):305–308

    Article  Google Scholar 

  • Ramaswamy GN, Sellers T et al (2003) Kenaf nonwovens as substrates for laminations. Ind Crops Prod 17(1):1–8

    Article  Google Scholar 

  • Rao S, Coombs B et al (2012) Kenaf MDF panels: a statistical approach in parameter selection. Int Wood Prod J 3(1):15–20

    Article  Google Scholar 

  • Rashdi AAA, Salit MS et al (2010) Water absorption behaviour of kenaf reinforced unsaturated polyester composites and its influence on their mechanical properties. Pertan J Sci Technol 18(2):433–440

    Google Scholar 

  • Rassmann S, Reid RG et al (2010) Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos A Appl Sci Manuf 41(11):1612–1619

    Article  Google Scholar 

  • Reinerink EJM, van der Kolk JC et al (1998) Validation of raw material coming from kenaf; Individual progress report for the period of 01–01-98 to 31–12-98. ATO-DLO, Madrid

    Google Scholar 

  • Ren X, Li K (2012) Investigation of vegetable-oil-based coupling agents for kenaf-fiber-reinforced unsaturated polyester composites. J Appl Polym Sci 125:2486

    Google Scholar 

  • Ren X, Qiu R et al (2012) Modifications of kenaf fibers with N-methylol acrylamide for production of kenaf-unsaturated polyester composites. J Appl Polym Sci 125(4):2846–2853

    Article  MathSciNet  Google Scholar 

  • Resalati H (2009) Kenaf CMP pulp; an alternative potential to supplement wood shortages for making newsprint. Proceedings Tappi Engeneering, Pulping and Environmental Conference 2009. Vol 3. pp 1462–1488

    Google Scholar 

  • Roberts S (1996) Potential of the non-wood fibre paper sector. International Institute for Environment and Development, Brazil

    Google Scholar 

  • Rouison D, Sain M et al (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644

    Article  Google Scholar 

  • Rowell RM, Stout HP (2007) Jute and Kenaf. Handbook of fibre chemistry. In: Lewin M (ed) CRC Press, New York pp 405–453

    Google Scholar 

  • Roy AK, Chattopadhyay SN (2012) Jute and alternative raw material for packaging paper. IPPTA 24(3):121–124

    Google Scholar 

  • Rozman HD, Sobra Mulisa A et al (2012) A comparison study of lignocellulosic-thermoplastic composites prepared from different compounding techniques. J Appl Polym Sci 124(6):4547–4553

    Google Scholar 

  • Rydholm SA (1985) Pulping Processes. Krieger publishing company, Malibar, Florida. reprint edition.

    Google Scholar 

  • Rymsza TA (1998) Creating High Value markets for kenaf paper—a commercial experience. http://www.visionpaper.com/PDF_speeches_papers/982aks.pdf. Accessed Sept 2012

  • Rymsza TA (1998) Utilizing kenaf for high value paper applications in the U.S.A. http://www.visionpaper.com/PDF_speeches_papers/hppsjapan.pdf. Accessed Sept 2012

  • Rymsza TA (2000) Advancements of kenaf in the USA-Kenaf paper and nonpaper developments. http://www.visionpaper.com/PDF_speeches_papers/007anwpp.pdf. . Accessed Sept 2012

  • Saad MJ (2012) The effect of maleated polypropylene (MAPP) on: the mechanical properties of Kenaf core—polypropylene composites. J Sustain Sci Manag 7(1):49–55

    Google Scholar 

  • Saijonkari-Pahkala K (2001) Non-wood plants as raw material for pulp and paper, Helsinki

    Google Scholar 

  • Sanadi AR, Caulfield D (2008) Thermoplastic polyolefins as formaldehyde free binders in highly filled lignocellulosic panel boards: using glycerine as a processing aid in kenaf fiber polypropylene boards. Mater Res 11(4):487–492

    Article  Google Scholar 

  • Sanadi AR, Caulfield DF et al (1995) Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Ind Eng Chem Res 34(5):1889–1896

    Article  Google Scholar 

  • Sato N (2001) Kenaf popular as nonwood alternative for paper. Kyodo News Service Japan Economic Newswire, Japan

    Google Scholar 

  • Seca AML, Cavaleiro JAS et al (1998) Structural Characterization of the Bark and Core Lignins from Kenaf (Hibiscus cannabinus). J Agric Food Chem 46(8):3100–3108

    Article  Google Scholar 

  • Seca AML, Silva AMS et al (2001) Lignanamides and other phenolic constituents from the bark of kenaf (Hibiscus cannabinus). Phytochemistry 58(8):1219–1223

    Article  Google Scholar 

  • Sellers TJ, Miller GDJ et al (1995) Lignocellulosic-Based Composites Made of Core From Kenaf. Ann Agric Crop. IUFRO 1995 World Congress. Tampere, Finland

    Google Scholar 

  • Shakhes J, Zeinaly F et al (2011) The effects of processing variables on the soda and soda-AQ pulping of Kenaf bast fiber. BioResources 6(4):4626–4639

    Google Scholar 

  • Shi J, Shi SQ et al (2011) A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources 6(1):879–890

    Google Scholar 

  • Sholton EJ (1981) Specialty paper from kenaf. Kenaf as a potential source of pulp in Australia, Brisbane

    Google Scholar 

  • Simatupang MH, Bröker FW (1998) Properties and hygroscopic isotherm of cement-bonded particleboards and fiberboards made by carbon dioxide injection method and conventional methods. Holz als Roh Werkstoff 56(4):275–276

    Article  Google Scholar 

  • Snijder MHB, Bos HL et al (2000) Reinforcement of polypropylene by annual plant fibers: optimisation of the coupling agent efficiency. Compos Interfaces 7(2):69–75

    Google Scholar 

  • Snijder MHB, Bos HL et al (2003) Extruder for continuously manufacturing composites of polymer and cellulosic fibres. U Patent US 6(565):348

    Google Scholar 

  • Sukyai P, Sriroth K et al (2012) The effect of bacterial cellulose on the mechanical and thermal expansion properties of kenaf/polylactic acid composites. Appl Mech Mater 117–119:1343–1351

    Google Scholar 

  • Summerscales J, Dissanayake NPJ et al (2010) A review of bast fibres and their composites. Part 1—fibres as reinforcements. Compos Appl Sci Manuf 41(10):1329–1335

    Article  Google Scholar 

  • Taib RM (1998) Cellulose fiber reinforced thermoplastic composites: processing and product charateristics. Virginia Polytechnic Institue and State University, Virginia

    Google Scholar 

  • Taib RM, Ramarad S et al (2010) Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym Compos 31(7):1213–1222

    Google Scholar 

  • Tao W, Moreau JP et al (1995) Properties of nonwoven mats from kenaf fiber. Tappi J 78(8):165–169

    Google Scholar 

  • Tao W, Calamari TA et al (1997) Characterization of kenaf fiber bundles and their nonwoven mats. Tappi J 80(12):162–166

    Google Scholar 

  • Tawakkal ISMA, Talib RA et al (2012) Mechanical and physical properties of kenaf-derived cellulose (KDC)-filled polylactic acid (PLA) composites. BioResources 7(2):1643–1655

    Google Scholar 

  • Taylor CS (1993) Kenaf: an emerging new crop industry. Wiley, New crops, New York, pp 402–407

    Google Scholar 

  • Touzinsky GF, Cunningham RL et al (1980) Papermaking properties of kenaf thermomechanical pulp. Tappi J 63(1):53

    Google Scholar 

  • Tsakonas A, Stergiou V et al (2005) Kenaf (Hibiscus cannabinus L.) based substrates for the production of compact plants. Ind Crops Prod 21(2):223–227

    Article  Google Scholar 

  • van Berlo JM, Bakker H et al (1993) Papier uit hennep van Nederlandse grond: eindrapportage van vier jaar henneponderzoek. Wageningen, s.n

    Google Scholar 

  • van Dam JEG (2009) Natural fibres and the environment: environmental benefits of natural fibre production and use. Symposium on natural Fibres, Rome

    Google Scholar 

  • van Dam JEG, van Vilsteren GET et al (1994) Increased application of domestically produced plant fibres in textiles, pulp and paper production and composite materials. European Commission, Brussels

    Google Scholar 

  • van Dam JEG, Gorshkova TA (2003) Plant growth and development: plant fiber formation, Chapter MS 46. Encyclopedia of applied plant sciences. In: Thomas B, Murphy DJ, Murray BG (eds) Elsevier, Amsterdam

    Google Scholar 

  • van Dam JEG, de Klerk-Engels B et al (2005) Securing renewable resource supplies for changing market demands in a bio-based economy. Ind Crops Prod 21(1):129–144

    Article  Google Scholar 

  • Vellema SR, Bos HL et al (2010) biobased industrialization in developing countries. The biobased economy: biofuels, materials and chemicals in the post-oil era. In: Langeveld H, Sanders J, Meeusen M (eds), Earthscan London pp 214–228

    Google Scholar 

  • Ververis C, Georghiou K et al (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19(3):245

    Article  Google Scholar 

  • Vision Paper (1999) “Kenaf and the 21st century current developments and trends. http://www.visionpaper.com/PDF_speeches_papers/992aks.pdf. Accessed July 2012

  • Vision-Paper (2010) Vison Paper. http://www.visionpaper.com/. Accessed Aug 2012

  • Watkins R (1994) The use of kenaf as bedding for horses and laboratory animals. Mississippi Agricultural & Forestry Experiment Station, Mississippi State University, Mississippi

    Google Scholar 

  • White JA, Cunningham DG et al (1970) Cultural and harvesting methodes for kenaf, an annual crop source of pulp in the south east. USDA produktion research report no 113

    Google Scholar 

  • Willför S, Alén R et al (2011) Chemical pulping Fibre Chemistry and Technology Chapt 1—Raw materials. Paper making science and technology book 6 (part1) Ã…. A. Pedro Fardim. Helsinki, Paperi ja Puu Oy

    Google Scholar 

  • Wood IM (1981) Kenaf for paper pulp: research and development around the world. Kenaf as a potential source of pulp in Australia, Brisbane

    Google Scholar 

  • Wood IM, Chudleigh PD et al (1990) The 1990 Kenaf workshop: summary of the conclusions and recommendations from the discussion sessions. In: Proceedings of workshop development of a Kenaf Industry in Australia, Brisbane

    Google Scholar 

  • Xu EC (2001) APMP pulps from non-wood fibres Part 1: kenaf and straw. Appita J 54(5):444–448

    Google Scholar 

  • Xu J, Han G et al (2003) Development of binderless particleboard from kenaf core using steam-injection pressing. J Wood Sci 49:327–332

    Article  Google Scholar 

  • Xu J, Sugawara R et al (2004) Manufacture and properties of low-density binderless particleboard from kenaf core. J Wood Sci 50:62–67

    Article  Google Scholar 

  • Yachmenev VG, Calamari TAJ et al (2004) Thermal insulation properties of kenaf and cotton nonwoven composites for automotive application Beltwide Cotton Conferences. San Antonio

    Google Scholar 

  • Yachmenev V, Negulescu I et al (2006) Thermal insulation properties of cellulosic-based nonwoven composites. J Ind Text 36(1):73–87

    Article  Google Scholar 

  • Yan TT, Gu WY et al (2011) Research on kenaf degumming with oxidation process. Adv Mater Res 332–334:1109–1113

    Article  Google Scholar 

  • Young J (1987) Kenaf newsprint is a proven commodity. Tappi J 11:81–83

    Google Scholar 

  • Yousif BF, Shalwan A et al (2012) Flexural properties of treated and untreated kenaf/epoxy composites. Mater Des 40:378–385

    Article  Google Scholar 

  • Yu H, Yu C (2010) Influence of various retting methods on properties of kenaf fiber. J Text Inst 101(5):452–456

    Article  Google Scholar 

  • Yu DM, Chen KF et al (2011) The study of Kraft continuous cooking of knenaf. Adv Mater Res 236–238:1212–1215

    Article  Google Scholar 

  • Zaveri MD (2004) Absorbency characteristics of kenaf core particles. Master of science. North Carolina State University, North Carolina

    Google Scholar 

  • Zeinaly F, Shakhes J et al (2011) Multistage alkali peroxide bleaching in low kappa kenaf bast pulp In: International Pulp Bleaching Conference 2011, IPBC 2011, Portland, OR, United States, 5–7 October 2011. pp 542–552

    Google Scholar 

  • Zhang T (2003) Improvement of kenaf yarn for apparel applications. Master, Louisiana State University, Baton Rouge

    Google Scholar 

  • Zhou Z, Yin X et al (2009) Research on the gasification characteristics of the industrial residues of kenaf. In: Goswami DY, Zhao Y (eds) Proceedings of ISES world congress 2007 (Vol I–V), Springer, Berlin pp 2397–2399

    Google Scholar 

  • Zuliahani A, Rozman HD et al (2011) Preparation of epoxy-Kenaf nanocomposite based on montmorillonite. Adv Mater Res 264–265:469–474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. G. van Dam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Lips, S.J.J., van Dam, J.E.G. (2013). Kenaf Fibre Crop for Bioeconomic Industrial Development. In: Monti, A., Alexopoulou, E. (eds) Kenaf: A Multi-Purpose Crop for Several Industrial Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5067-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5067-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5066-4

  • Online ISBN: 978-1-4471-5067-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics