Skip to main content

Photons, Electrons and Holes: Fundamentals of Photocatalysis with Semiconductors

  • Chapter
  • First Online:
Design of Advanced Photocatalytic Materials for Energy and Environmental Applications

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Although not all the heterogeneous photocatalysts are semiconductors, this type of solids represents, by far, the most representative and widely investigated photoactive materials. For that reason, the fundamentals of the electronic structure of semiconductors, as well as the mechanism of their interaction with light and the relevance of their surface properties will be accounted for in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implicitly, the effective-mass approximation is adopted here (see Sect. 2.3), because the weak dependence of u i (r) with k is neglected.

  2. 2.

    This wavelength derives from the Broglie relationship, λ = h/p, where h is the Heisenberg constant and p is the momentum.

  3. 3.

    Obviously, real heterogeneous catalysts frequently suffer deactivation, but such phenomenon occurs following several cycles (frequently more than ten hundreds), and consequently, recovery of the initial state (even if imperfect) is still a crucial aspect in catalysis.

References

  • Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61(11):7459–7465

    Article  Google Scholar 

  • Atkins PW (1998) Physical Chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  • Bao J, Shalish I, Su Z, Gurwitz R, Capasso F, Wang X, Ren Z (2011) Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res Lett 6:404

    Article  Google Scholar 

  • Campoccia A, Dusonchet L, Telaretti E, Zizzo G (2009) Comparative analysis of different supporting measures for the production of electrical energy by solar PV and Wind systems: Four representative European cases. Sol Energy 83(3):287–297

    Article  Google Scholar 

  • Coronado JM, Maira AJ, Conesa JC, Yeung KL, Augugliaro V, Soria J (2001) EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 17(17):5368–5374

    Article  Google Scholar 

  • Coronado JM, Soria J (2007) ESR study of the initial stages of the photocatalytic oxidation of toluene over TiO2 powders. Catal Today 123(1–4):37–41

    Article  Google Scholar 

  • Duffy JA (1990) Bonding energy levels & bands, inorganic solids. Longman, Essex

    Google Scholar 

  • Fernandez-Garcıa M, Martınez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063–4104

    Article  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobio C 1:1–21

    Article  Google Scholar 

  • Georgia State University, Department of Physics and Astronomy (2011) In Hyperphysics, Semiconductors. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

  • Guo H, Lin Z, Feng Z, Lin L, Zhou J (2009) White-light-emitting diode based on ZnO nanotubes. J Phys Chem C 113:12546–12550

    Article  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  Google Scholar 

  • Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Reports 66(6–7):185–297

    Article  Google Scholar 

  • Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110). J Phys Chem B 107(2):534–545

    Article  Google Scholar 

  • Hoffmann R (1989) Solid and surfaces: a Chemist’s view of bonding in extended structures. VCH, New York

    Google Scholar 

  • Hoffmann M, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Hernández-Alonso MD, Hungría AB, Martínez-Arias A, Fernández-García M, Coronado JM, Conesa JC, Soria J (2004) EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Appl Catal B 50:167–175

    Article  Google Scholar 

  • Herrmann JM (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B 99(3–4):461–468

    Google Scholar 

  • Kennedy JC, Datye AK, Catal J (1998) Photothermal heterogeneous oxidation of ethanol over Pt/TiO2. J Catal 179:375–389

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  • Nagao M, Suda Y (1989) Adsorption of benzene, toluene, and chlorobenzene on titanium dioxide. Langmuir 5:42

    Article  Google Scholar 

  • Nakaoka Y, Nosaka Y (1997) Electron spin resonance study of radicals produced by photoirradiation on quantized and bulk ZnS particles. Langmuir 13:708–713

    Article  Google Scholar 

  • Nelson J (2003) The physics of solar cells. Imperial College Press, London

    Book  Google Scholar 

  • Maudhuit A, Raillard C, Héquet V, Le Coq L, Sablayrolles J, Molins L (2011) Adsorption phenomena in photocatalytic reactions: the case of toluene, acetone and heptane. Chem Eng J 170(2–3):464–470

    Article  Google Scholar 

  • Migas DB, Shaposhnikov VL, Borisenko VE, Arnaud D’Avitaya F (2010) Effects of morphology on stability, electronic, and optical properties of Rutile TiO2 nanowires. J Phys Chem C 114(49):21013–21019

    Article  Google Scholar 

  • Mills A, Hill C, Robertson PKJ (2012) Overview of the current ISO tests for photocatalytic materials. J Photochem Photobio A 237:7–23

    Article  Google Scholar 

  • Miller DAB (2007) Germanium quantum wells for high-performance modulators in silicon photonics. Photonic Spectra. September issue. http://www.photonics.com/Article.aspx?AID=30705

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  Google Scholar 

  • Ohtani B (2010) Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J Photochem Photobio C: Photochem Rev 11:157–178

    Article  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  • Rönngren L, Sjöberg S, Sun ZX, Forsling W (1994) Surface reactions in Aqueous metal sulfide systems: 5. The complexation of sulfide ions at the ZnS-H2O and PbS-H2O Interfaces. J Colloid Interface Sci 162(1):227–235

    Google Scholar 

  • Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: A revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111(45):17038–17043

    Article  Google Scholar 

  • Sahel K, Perol N, Chermette H, Bordesc C, Derriche Z, Guillard C (2007) Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—Isotherm of adsorption, kinetic of decolorization and mineralization. Appl Catal B 77(1–2):100–109

    Google Scholar 

  • Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842

    Article  MATH  Google Scholar 

  • Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24(2):229–251

    Article  Google Scholar 

  • Thompson TL, Yates JT Jr (2006) Surface science studies of the Photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453

    Article  Google Scholar 

  • Westrich TA, Dahlberg KA, Kaviany M, Schwank JW (2011) High-temperature photocatalytic ethylene oxidation over TiO2. J Phys Chem C 115:16537–16543

    Article  Google Scholar 

  • Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Coronado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Coronado, J.M. (2013). Photons, Electrons and Holes: Fundamentals of Photocatalysis with Semiconductors. In: Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R. (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5061-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5061-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5060-2

  • Online ISBN: 978-1-4471-5061-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics