Skip to main content

Cooperative Solutions to Dynamic Games

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 121 Accesses

Abstract

This article presents the fundamental elements of the theory of cooperative games in the context of dynamic systems. The concepts of Pareto optimality, Nash bargaining solution, characteristic function, cores, and C-optimality are discussed, and some fundamental results are recalled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Basile G, Vincent TL (1970) Absolutely cooperative solution for a linear, multiplayer differential game. J Optim Theory Appl 6:41–46

    MathSciNet  Google Scholar 

  • Bellassali S, Jourani A (2004) Necessary optimality conditions in multiobjective dynamic optimization. SIAM J Control Optim 42:2043–2061

    MathSciNet  Google Scholar 

  • Bertsekas DP, Rhodes IB (1971) On the minimax reachability of target sets and target tubes. Automatica 7:23–247

    MathSciNet  Google Scholar 

  • Binmore K, Rubinstein A, Wolinsky A (1986) The Nash bargaining solution in economic modelling. Rand J Econ 17(2):176–188

    MathSciNet  Google Scholar 

  • Blaquière A, Juricek L, Wiese KE (1972) Geometry of Pareto equilibria and maximum principle in n-person differential games. J Optim Theory Appl 38:223–243

    Google Scholar 

  • Breton M, Sbragia L, Zaccour G (2010) A dynamic model for international environmental agreements. Environ Resour Econ 45:25–48

    Google Scholar 

  • Case JH (1969) Toward a theory of many player differential games. SIAM J Control 7(2):179–197

    MathSciNet  Google Scholar 

  • Da Cunha NO, Polak E (1967a) Constrained minimization under vector-valued criteria in linear topological spaces. In: Balakrishnan AV, Neustadt LW (eds) Mathematical theory of control. Academic, New York, pp 96–108

    Google Scholar 

  • Da Cunha NO, Polak E (1967b) Constrained minimization under vector-valued criteria in finite dimensional spaces. J Math Anal Appl 19:103–124

    MathSciNet  Google Scholar 

  • Germain M, Toint P, Tulkens H, Zeeuw A (2003) Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. J Econ Dyn Control 28:79–99

    Google Scholar 

  • Goffin JL, Haurie A (1973) Necessary conditions and sufficient conditions for Pareto optimality in a multicriterion perturbed system. In: Conti R, Ruberti A (eds) 5th conference on optimization techniques, Rome. Lecture notes in computer science, vol 4 Springer

    Google Scholar 

  • Goffin JL, Haurie A (1976) Pareto optimality with nondifferentiable cost functions. In: Thiriez H, Zionts S (eds) Multiple criteria decision making. Lecture notes in economics and mathematical systems, vol 130. Springer, Berlin/New York, pp 232–246

    Google Scholar 

  • Haurie A (1973) On Pareto optimal decisions for a coalition of a subset of players. IEEE Trans Autom Control 18:144–149

    MathSciNet  Google Scholar 

  • Haurie A (1975) On some properties of the characteristic function and the core of a multistage game of coalition. IEEE Trans Autom Control 20(2):238–241

    MathSciNet  Google Scholar 

  • Haurie A (1976) A note on nonzero-sum differential games with bargaining solutions. J Optim Theory Appl 13:31–39

    MathSciNet  Google Scholar 

  • Haurie A, Delfour MC (1974) Individual and collective rationality in a dynamic Pareto equilibrium. J Optim Appl 13(3):290–302

    MathSciNet  Google Scholar 

  • Haurie A, Towinski B (1985) Definition and properties of cooperative equilibria in a two-player game of infinite duration. J Optim Theory Appl 46(4):525–534

    MathSciNet  Google Scholar 

  • Isaacs R (1954) Differential games I: introduction. Rand Research Memorandum, RM-1391-30. Rand Corporation, Santa Monica

    Google Scholar 

  • Leitmann G, Rocklin S, Vincent TL (1972) A note on control space properties of cooperative games. J Optim Theory Appl 9:379–390

    MathSciNet  Google Scholar 

  • Nash J (1950) The bargaining problem. Econometrica 18(2):155–162

    MathSciNet  Google Scholar 

  • Pareto V (1896) Cours d’Economie Politique. Rogue, Lausanne

    Google Scholar 

  • Salukvadze ME (1971) On the optimization of control systems with vector criteria. In: Proceedings of the 11th all-union conference on control, Part 2. Nauka

    Google Scholar 

  • Shapley LS (1953) Stochastic games. PNAS 39(10):1095–1100

    MathSciNet  Google Scholar 

  • Starr AW, Ho YC (1969) Nonzero-sum differential games. J Optim Theory Appl 3(3):184–206

    MathSciNet  Google Scholar 

  • Vincent TL, Leitmann G (1970) Control space properties of cooperative games. J Optim Theory Appl 6(2):91–113

    MathSciNet  Google Scholar 

  • von Neumann J, Morgenstern O (1944) Theory of Games and Economic Behavior, Princeton University Press

    Google Scholar 

  • Zadeh LA (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control AC-8:59–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Haurie, A. (2015). Cooperative Solutions to Dynamic Games. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5058-9_31

Download citation

Publish with us

Policies and ethics